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Can we predict reading comprehension? 
•  eText is ubiquitous 
•  eLearning is becoming ubiquitous 
•  Predicting comprehension removes need to 

consistently explicitly assess students 
•  Adaptive content generation based on 

predictions 
•  Prediction from eye movements is difficult 

–  How do we improve predictions? 
–  Use a flexible error function for training? 
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Image taken from: http://www.scholarpedia.org/article/File:Reading.jpg 

How Do People Read?  

Fixation Saccade 
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How do we capture eye movements? 
•  Eye tracking! 

–  Capture where the eye is looking  

•  We use video-based tracking 
–  Non-intrusive, 
–  Infrared light projected at the reader, reflects off the 

eye and sensed by special  
cameras 

–  Typically corneal reflection  
and the centre of the pupil  
is used to track the eye and 
 calculate eye rotation 
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Predicting Reading Comprehension 
•  Correlation between fixation duration and 

comprehension (Underwood, et al. 1990)  
•  Correlation between regressions and text 

difficulty (Rayner, et al., 2006) .  
•  Random forests and SVMs were used to predict 

readers understanding and language skill from 
multiple eye movement measures (Martínez-
Gómez and Aizawa, 2014) 
–  Good prediction of high and low performers but not of 

quantification of readers understanding 
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•  Reading assistance  
–  iDict (Hyrskykari et al., 2000) 
–  The Reading Assistant (Sibert et al., 2000)  

•  Eye gaze can be used to differentiate the types 
of content being read, using SVMs and ANNs 
(Vo et al., 2010) 

•  ANNs have been used to predict item difficult in 
multiple-choice questions (Perkins et al. 1995) 

Eye Tracking in Adaptive eLearning  
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Past Research 
•  Different sequences of text and questions shown 

to participants 
–  All text were the same level of difficulty (easy to read) 

•  Artificial neural networks used to predict reading 
comprehension scores 
–  Custom error function: Fuzzy Output Error (FOE) 
–  FOE describes the error in a fuzzy way and then 

sums the fuzzy errors together to get the total error. 
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Discussion 
•  Difficult prediction problem 

–  Best classification for 3 hidden layer networks 

•  Formats with questions and text on the same 
page generated the best results (~90% correct 
classification) 

•  When only text is shown to participants only 
chance results are achieved 
–  Complicated relationship between eye movements 

and understanding 
–  Need for improvement in classification for this case 
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Limitations of this study 
•  Is the text difficulty aligned with perceptions of 

difficulty? 
–  Could result in poor predictions 

•  The text had the same level of difficulty 
–  how to does changing the difficulty change predictions 

and perceptions of difficulty? 
•  Are there differences in perceptions between L1 

and L2 readers? 
–  Create separate classifiers for L1 and L2 readers 
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Can we improve predictions of reading 
comprehension? 
•  One method is by using better prediction 

techniques  
•  Another, is by exploiting the fact that text 

difficulty affects eye movements 
–  Difficult text =  more fixations, more regressions 

(Rayner et al., 2006) 
–  Does making text more difficult to read make it easier 

to detect comprehension from eye movements? 
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Figure'1.'Example'of'text'shown'in'Wa8le'eLearning'Environment;

User Study Methodology 
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9 levels of text difficulty 
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Figure'2.'Description'of'the'text'property'breakdown. 
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•  To test for generalisability there are 3 sets of 9 
texts 

•  Each set covered a different topic on the main 
topic of Digital images: 
–  Working with 

Digital Images,  
–  Copyright and  

Intellectual Property 
–  Photo Credibility 
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Paths 
•  Each participant was given a sequence of texts 

to read. 
1.  A B D 
2.  A E J  
3.  A B G 
4.  A D C  
5.  A E H  
6.  A E F  
7.  A D B 
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Questionnaire 
•  How well do you think you understood the text? 

(Very well / Well / Somewhat / Not at all) 
•  How confident were you answering the 

questions? (Very confident / Confident / Not 
Confident) 

•  How difficult did you find the text to read? (Easy / 
Moderate / Hard) 

•  How complex was the concept being explained 
in the text? (Basic / Intermediate / Advanced) 
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Experiment setup 
•  Displayed to participants through online learning 

environment used at ANU 
–  Wattle (Moodle variant) 

•  displayed on a 1280x1024 pixel Dell monitor.  
•  Eye gaze recorded at 60Hz using Seeing 

Machines FaceLAB 5 infrared cameras mounted 
at the base of the monitor 
–  This eye tracker has a gaze direction accuracy of 

0.5-1° rotational error and measures pupil diameter as 
well as blink events.  

–  9-point calibration prior to data collection for each 
participant 
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Participants 
•  The eye gaze of 70 participants (47 male, 23 

female) was recorded. Participants had an 
average age of 25 years (9 years standard 
deviation, range of 18 to 60 years). 
–  46 stated that English was the first language 
–  24 stated a language other than English 
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Data Pre-prosessing 
•  Eye gaze (x,y-coords) converted to fixations 
•  Fixations converted to eye movement measures: 

–  Normalised Num. fixations, Max fixation dur (s), Ave. 
fixation dur (s), Normalised total fixation dur (s), 
regression ratio, Ave. forward saccade, Reading 
analysis, Regional Analysis, Distractions counted 

•  Calculated for each page 
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Research Question: 
•  Can we improve predictions of reading 

comprehension through manipulations of text 
readability and conceptual difficulty? 
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Hypotheses: 
1.  Better prediction will be obtained for L1 

readers;  
2.  Better results will be obtained when the text is 

most difficult; and, 
3.  Predictions will be consistent between different 

versions of texts with the same complexity.  
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Predictions: L1 readers only 
Text ID; Text Properties; Topic 1; Topic 2; Topic 3;

Readability! Concept !

A; Easy! Basic! 0.34! 0.21! 0.35!
B; Moderate! Basic! 0.34! 0.28! 0.29!
C; Difficult! Basic! 0.50! 0.24! 0;
D; Easy! Intermediate! 0.32! 0.40! 0.13!
E; Moderate! Intermediate! 0.56! 0.41! 0.17!
F; Difficult! Intermediate! 0.62! 0; 0.62!
G; Easy! Advanced! 0.06; 0.42! 0;
H; Moderate! Advanced! 0.07; 1.22! 0.52!
J; Difficult! Advanced! 0.13; 0.41! 0.12;
 ; Average! 0.33! 0.40! 0.25!
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Predictions: L2 readers only 
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Text ID; Text Properties; Topic 1; Topic 2; Topic 3;
Readability! Concept !

A; Easy! Basic! 0.41! 0.39! 0.30!
B; Moderate! Basic! 0.38! 0.32! 0.27!
C; Difficult! Basic! 1.04! 1.45! 0.43!
D; Easy! Intermediate! 0.68! 0.20! 0.40!
E; Moderate! Intermediate! 0.39! 0.42! 0.23!
F; Difficult! Intermediate! 0.51! 0.25! 0.50!
G; Easy! Advanced! 0.51! 1.04! 0.49!
H; Moderate! Advanced! 0.29! 1.03! -!
J; Difficult! Advanced! 0.11! 0.09! 1.00!
 ; Average! 0.48! 0.58! 0.45!
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Summary   
•  Hypothesis 1: validated 

–  L1 predictions are better than L2 predictions 

•  Hypotheses 2 and 3: no generalisation but there 
is a trend in better predictions for the more 
difficult texts as we hypothesised 

•  Why is there no generalisation? 
–  Need to check now that the eye movements are as 

we would expect them to be… 
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Eye Movements – Norm. num. fixations 
Text ID;

Topic 1; Topic 2; Topic 3 ;

L1; L2; L1; L2; L1; L2;

A; 0.68% 0.84% 0.62% 0.79% 0.68% 0.79%
B; 0.66% 0.93% 0.78% 0.72% 0.72% 0.75%
C; 0.9% 0.75% 0.67% 0.74% 0.75% 1.04%
D; 0.66% 0.74% 0.76% 0.91% 0.7% 0.76%
E; 0.78% 1.01% 0.6% 0.89% 0.79% 1.04%
F; 1.23% 1.3% 0.67% 0.56% 0.88% 0.69%
G; 0.71% 1.13% 0.7% 0.9% 0.43% 0.99%
H; 0.82% 0.77% 0.79% 1.0% 0.69% 0.6%
J; 1.06% 1.16% 0.73% 0.97% 0.89% 1.05%
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Effect of Text on NNF 
•  For L1 readers:  

–  for both Topics 1 and 3 there is an increase in NNF as 
readability increases (expected from past research) 

–  Increase also seen as conceptual level increases! 
–  more pronounced for Topic 1 
–  No pattern in NNF for Topic 2  

•  For L2 readers:  
–  higher NNF values (expected from past research) 
–  Pattern of increased NNF due to text difficulty not 

clear for L2 readers 
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Implications 
•  A step forward in prediction of reading 

comprehension 
•  Intended use in adaptive eLearning: 

–  omission of some assessment questions  
–  differentiate between actual understanding and 

accidental choice of the correct answer 
•  Using standard readability formula, (e.g. the 

Flesch-Kincaid Grade Level) to assess the 
readability of text is not sufficient 
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Interim summary 
•  Predictions for the L1 dataset better for the L2 

dataset  
•  Text properties have an effect on the predictions 

rates, however: 
–  not consistent between different topics 
–  investigation of eye movements reveals this is due to 

the eye movements not matching expected text 
difficulty in all topics 

–  for the topics where the eye movements conformed to 
text difficulty, there is a trend of  lower MSEs when 
the concept level is advanced. 
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Where to now? 
•  Since the eye movements do not reflect the 

intended difficulty for all of the text we have to 
ask:  
–  Are the texts perceived as being that difficult? 

•  Investigation of the qualitative data collected 
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Remember: Limitations of past study 
•  Is the text difficulty aligned with perceptions of 

difficulty? 
–  Could result in poor predictions 

•  The text had the same level of difficulty 
–  how to does changing the difficulty change predictions 

and perceptions of difficulty? 
•  Are there differences in perceptions between L1 

and L2 readers? 
–  Create separate classifiers for L1 and L2 readers 
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Perceptions of Text Complexity 
•  Participants were asked to rate the difficulty of 

the text in a questionnaire after reading each 
piece of text 

•  Given that the eye movements do not align 
exactly with how we would expect them to this 
raises the question of whether the text is actually 
as difficult as it is meant to be? 
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Hypotheses 
1.  Perceptions of text difficulty between the L1 

and L2 readers will be different  
2.  Changes in text difficulty will be reflected by 

changes in perceived difficulty, however,  
a.  the readability and conceptual difficulty will interplay 

to cause deviations of perceptions from the expected 
difficulty, 

3.  Eye movements can be used to provide a more 
accurate rating system for text difficulty 
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Figure 4. Visualisation of perceptions of text complexity 

Perception results 
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Interim Summary  
•  L1 and L2 readers have different perceptions of 

difficulty 
•  Readability and Concept level interact  

–  how distinguishable is readability from conceptual 
level? 

•  Implication:  
–  readability and conceptual level can be manipulated 

to effect perceived overall difficulty 
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Now to the last hypothesis 
•  eye movements can be used to provide a more 

accurate rating system for text difficulty 
•  Using cluster analysis of the eye movement 

measures can we rank the texts in difficulty 
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Ranking Perceived Text Complexity 
using eye movements: L1 Readers 
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Ranking Perceived Text Complexity 
using eye movements: L2 Readers 

41 

iHcci

Implications   
•  The cluster analysis reveals two different 

difficulty ratings 
–  One for L1 reader, the other for L2 readers 

•  Gives median perceived difficulty of text 
–  This can be used to gauge the perceived difficulty 
–  Teachers can use this information to produce better 

learning materials in eLearning 
•  Use in adaptive eLearning: 

–  Find the difficulty of the text as perceived by each 
student and change the text given to them based on 
this rating – Better targeting of skill level 
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Overall Discussion   
•  The text properties have a bearing on prediction 

results 
–  Making a text more complex will increase prediction 

results 
–  However, text actually has to be complex; cannot rely 

on traditional readability statistics 
•  Readability and conceptual difficulty interact to 

distort overall perceptions 
•  Eye movements can be used to get average 

perceived text complexity 
–  There are clear difference between L1 and L2 readers  
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Further Work 
•  More work to be done on getting better 

predictions 
•  Consider pupil dilation, GSR, ECG, EEG, etc. 
•  Look at different types of texts, do these affect 

the eye movements the same? 
–  e.g. highly technically 

•  Validating if adaptive changes in eLearning 
provide benefit  
–  short and longitudinal study 

•  Mobile environments e.g. tablets, smartphones 
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