

Preface – Outline

Introduction

- Motivation
- Bionic aspects
- Living paradigms
- Anatomy

Part II – Vibrissae

- 1. Introduction
- 2. Functionality
- 3. Application
- 4. State of art

5. Modeling - Stages 1-4 - Multi-body Systems

- Stage 5 Continuous Systems
 - 5a Natural Frequencies
 - 5b Object Distance
 - 5c Object Contour
 - 5d Object Texture
 - 5e Flows

Part I – Mechanoreceptors

- 1. Inspiration from biology
- 2. Modeling
- 3. Scope, problem & goal
- 4. Mathematical model
- 5. Control strategies
- 6. Adaptors
- 7. Simulations
- 8. Experiments
- 9. Conclusions

Outlook

Introduction – Motivation

Main Focus / Aim:

Tactile sensing of environmental information

Approach: Inspiration from Biology

Animal Vibrissae

Transfer Functionalities to Engineering:

BIONICS

Analytical Treatment / Simulation / Prototypes

Introduction – Bionic aspects

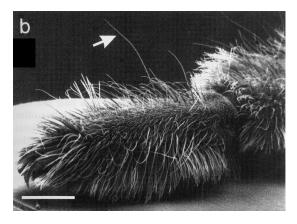
- 1. analyzing live biological systems, e.g. vibrissae,
- 2. **quantifying** the mechanical and environmental behavior: identifying and quantifying mechanosensitive responses (e.g., pressure, vibrations) and their mechanisms as adaptation,
- 3. modeling live paradigms with basic features developed before,
- 4. **exploiting** corresponding mathematical models in order to understand details of internal processes and,
- 5. **coming** to artificial prototypes (e.g., sensors in robotics), which exhibit features of the real paradigms.

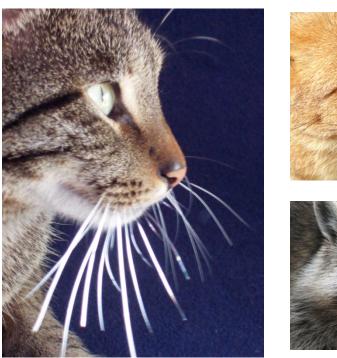
Important:

- focus is **not** on "copying" the solution from biology / animality
- not to construct prototypes with one-to-one properties of, e.g., a vibrissa

Introduction – Living paradigms

Different names: vibrissa, whisker, tactile hair, sensory hair, sensillum, ...





[www]

 \rightarrow variability in length, diameter, shape (curvature) and conical structure

13/11/2016

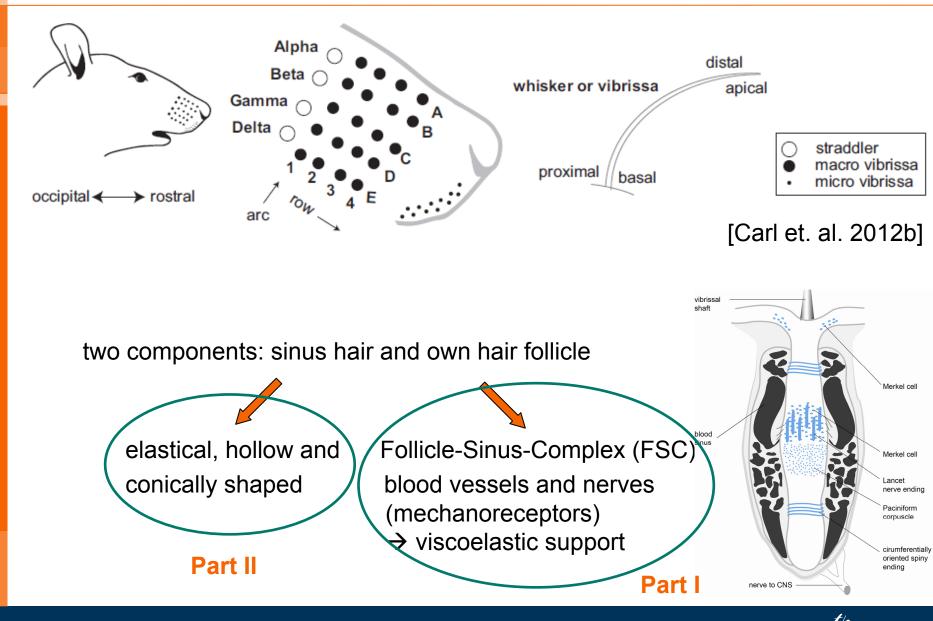
Slide 04

Introduction – Living paradigms

Tactile sensing of environmental informations

- complex tactile sensory organ: sense of vibrations
- "near field"-sense in contrast to "far field"-senses (e.g., vision)
- tactile hairs / vibrissae in the region around the snoot mystacial vibrissae
- vibrissa is used as lever for force transmission
- found in nocturnal / non-visual animals (best developed in rodents e.g. rats)

Introduction – Anatomy of vibrissae



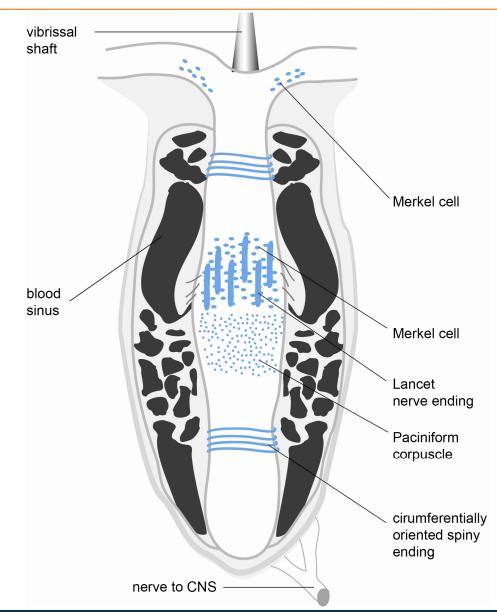
13/11/2016 Slide 06

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features" TECHNISCHE UNIVERSITÄT

Part I: Mechanoreceptors – 1. Inspiration from biology

Mechanoreceptors of sensory hair systems:

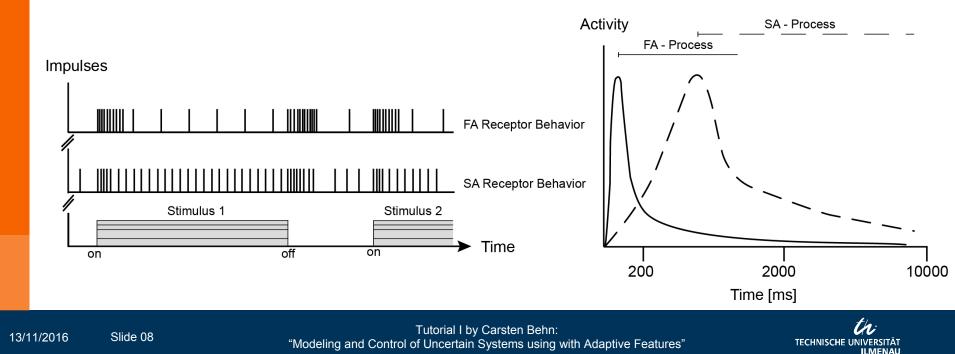
- Follicle-Sinus-Complex (FSC) with blood vessels, nerves and mechanoreceptors (right side)
- Detection of vibrissa displacements by mechanoreceptors in the FSC
- Receptors have only one function: transduce a (mechanical) stimulus to neural impulses



ILMENAU

Part I: Mechanoreceptors – 1. Inspiration from biology

- a receptor never continues to respond to a non-changing stimulus in transducing impulses to the CNS
- the neuron's reaction is controlled:
 - \rightarrow is being suppressed, enhanced or left unaltered
- hence, depending on the stimulus, a receptor offers a rapid and brief response; then, this response declines if the stimulus is un-changing (stimulus is damped, is considered irrelevant once it has been perceived)



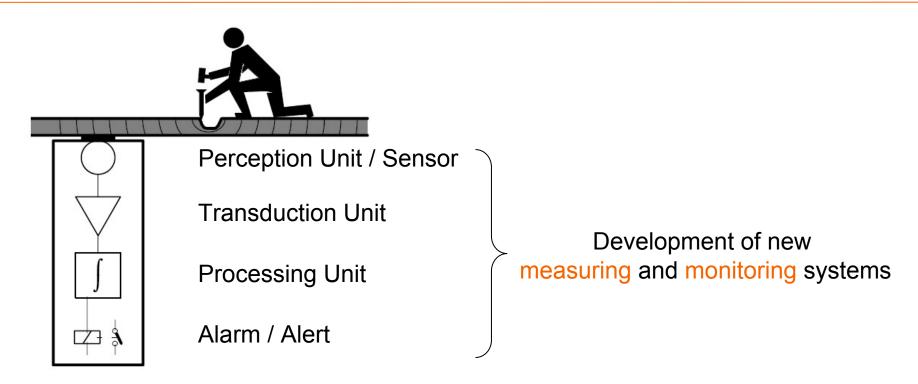
Part I: Mechanoreceptors – 1. Inspiration from biology

- sensibility of FA-receptor-cells is continuously adjusted in such a way that the whole systems tends to its rest position – despite a continued excitation

- "waiting" / sensitive for new stimulus

- due to permanently changing environment the receptor has to be in a permanent state of adaptation
- Example: think of a cat
 - exposed to wind
 - this stimulus is perceived and damped (irrelevant)
 - cat encounters obstacle, receptor should perceive this sudden deviation of the whiskers, while wind persists
 - \rightarrow enduring sensitivity

Part I: Mechanoreceptors – 2. Modeling



- Adjustment and adaptation of its sensitiviy to the environment

- obvious: unknown surroundings
- → treatment of uncertain systems: How to design an effective processing unit?

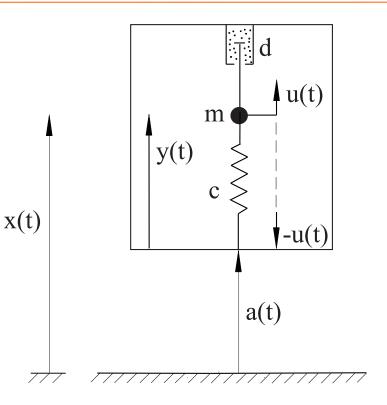
Part I: Mechanoreceptors – 2. Modeling

Receptor model:

- linear spring-mass-damper-system within a rigid frame
- forced by an unknown time-dependent displacement $a(\cdot)$

- adjustment: assuming control force $u(\cdot)$ acting on inner mass

in relative coordinate y = x - a as the measured output



$$\begin{pmatrix} y(t) \\ \dot{y}(t) \end{pmatrix}^{\bullet} = \begin{bmatrix} 0 & 1 \\ -\frac{c}{m} & -\frac{d}{m} \end{bmatrix} \begin{pmatrix} y(t) \\ \dot{y}(t) \end{pmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u(t) + \begin{bmatrix} 0 \\ -\ddot{a}(t) \end{bmatrix}$$

$$y(0) = x_0 - a(0) , \quad \dot{y}(0) = x_1 - \dot{a}(0) .$$

ILMENAU

Part I: Mechanoreceptors – 3. Scope, problem & goal

Scope:

- achieve a predefined movement of the receptor mass as stabilization of the sensor system or tracking of a reference trajectory
- sole possibility: control force $u(\cdot)$
- find a suitable control strategy to reproduce the specialities of the biological system
- compensate unknown ground excitations

Problem:

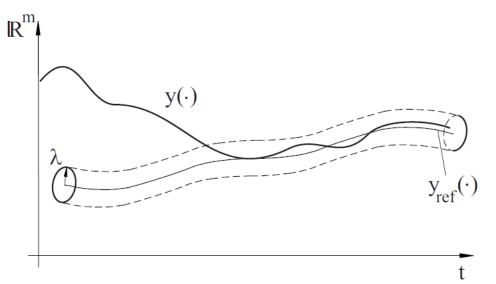
- many open-loop and closed-loop controls are based on exactly known parameters
- here: highly uncertain control system (due to biological complexity)
 - unknown external perturbation
 - unknown system parameters
 - only structural properties known

What to do if the system is not known precisely?

Part I: Mechanoreceptors – 3. Scope, problem & goal

Goal:

Design an adaptive controller, which learns from the behavior of the system, so automatically adjusts its parameters and achieves ...



 λ - tracking (not exact tracking)

- (i) every solution of the closed-loop system is defined and bounded,
- (ii) the output $y(\cdot)$ tracks the given reference signal with asymptotic accuracy λ .

Requirements:

- ability to apply controllers without knowledge about system parameters
- simple feedback / controller structure
- small level of gain parameters, level of error inside the tube
- ability to quickly adapt to parameter changes

Part I: Mechanoreceptors – 4. Mathematical model

 $\left. \begin{array}{l} \ddot{y}(t) = A_2 \, \dot{y}(t) + f_1 \big(s_1(t), y(t), z(t) \big) + G \, u(t) \, , \\ \dot{z}(t) = A_5 \, z(t) + A_0 \, \dot{y}(t) + f_2 \big(s_2(t), y(t) \big) \, , \\ y(t_0) = y_0 \, , \quad \dot{y}(t_0) = y_1 \, , \quad z(t_0) = z_0 \, , \end{array} \right\}$

General System Class:

•
$$y(t), y_0, y_1, u(t) \in \mathbb{R}^m, z(t), z_0 \in \mathbb{R}^{n-2m};$$

- real valued A_2 , G, A_5 , A_0 of appropriate dimensions;
- $n \ge 2m;$
- quadratic, finite-dimensional, nonlinearly perturbed, *m*-input $u(\cdot)$, *m*-output $y(\cdot)$ control system (MIMO) with strict relative degree two;
- spec(G) ⊂ C₊, i.e., the spectrum of the "high-frequency gain" lies in the open right-half complex plane;

Properties:

- spec $(A_5) \subset \mathbb{C}_-$, i.e., the unperturbed system is minimum phase (stable zero dynamics);
- functions f_1 and f_2 are continuous and linearly affine bounded;
- s_1 and s_2 may be thought of as (bounded) disturbance terms;

Part I: Mechanoreceptors – 4. Mathematical model

 $\begin{cases} \ddot{y}(t) = A_2 \, \dot{y}(t) + f_1 \big(s_1(t), y(t), z(t) \big) + G \, u(t) \,, \\ \dot{z}(t) = A_5 \, z(t) + f_2 \big(s_2(t), y(t) \big) \,, \\ y(t_0) = y_0 \,, \quad \dot{y}(t_0) = y_1 \,, \quad z(t_0) = z_0 \,, \end{cases} \end{cases}$

- Special System Subclass:
- $y(t), y_0, y_1, u(t) \in \mathbb{R}, z(t), z_0 \in \mathbb{R}^{n-2};$
- real valued A_2 , G, A_5 of appropriate dimensions;
- $n \ge 2;$

restriction

- quadratic, finite-dimensional, nonlinearly perturbed, SISO-control system with strict relative degree two;
- G > 0, i.e., positive input gain;

Properties:

- spec $(A_5) \subset \mathbb{C}_-$, i.e., the unperturbed system is minimum phase (stable zero dynamics);
- functions f_1 and f_2 are continuous and linearly affine bounded;
- s_1 and s_2 may be thought of as (bounded) disturbance terms;
- $A_2 < 0$, i.e., stable zero-center;

Part I: Mechanoreceptors – 5. Control strategies

Modified from literature, high-gain controllers:

<u>Controller 1:</u> (using the derivative of the output)

$$e(t) := y(t) - y_{ref}(t),$$

$$u(t) = -\left(k(t)e(t) + \frac{d}{dt}\left(k(t)e(t)\right)\right),$$

$$\dot{k}(t) = \gamma\left(\max\left\{0, \left\|e(t)\right\| - \lambda\right\}\right)^{2}, \quad k(0) = k_{0} \in \mathbb{R}\right\}$$
World class

Works for general class, proven 2006

Controller 2: (includes a dynamic compensator, no derivative measurement) $e(t) := y(t) - y_{ref}(t)$, $u(t) = -k(t)\,\theta(t) - \frac{d}{dt} \left(k(t)\,\theta(t)\right),$ Works for general $\dot{\theta}(t) = -k(t)^2 \theta(t) + k(t)^2 e(t), \quad \theta(0) = \theta_0 \in \mathbb{R}^m$ $\dot{k}(t) = \gamma \max\left\{0, \left\|e(t)\right\| - \lambda\right\}^2, \quad k(0) = k_0 \in \mathbb{R}$ class, proven 2011 Controller 3: (controller of order 1, P-structure) Works only for $e(t) := y(t) - y_{\text{ref}}(t),$ special subclass, $u(t) = -k(t) e(t) \,,$ proven 2013, not $\dot{k}(t) = \gamma \max\{0, |e(t)| - \lambda\}^2, \quad k(0) = k_0 \in \mathbb{R}_+$ extendable to MIMO

13/11/2016 Slide 15

Part I: Mechanoreceptors – 5. Control strategies

Let $\lambda > 0$, $y_{\text{ref}}(\cdot) \in \mathcal{R}$, $s_1(\cdot) \in \mathcal{L}^{\infty}(\mathbb{R}_{\geq 0}; \mathbb{R}^{q_1})$ and $s_2(\cdot) \in \mathcal{L}^{\infty}(\mathbb{R}_{\geq 0}; \mathbb{R}^{q_2})$. Then the presented adaptive λ -trackers applied to every system of the general system class yields for any initial data $(y_0, y_1, z_0, \theta_0, k_0) \in \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^{n-2m} \times \mathbb{R}^m \times \mathbb{R}_{>0}$

$$egin{aligned} \dot{y}(t) &= \zeta(t), & y(0) = y_0, \ \dot{\zeta}(t) &= A_2\,\zeta(t) + f_1ig(s_1(t),y(t),z(t)ig) & & \ -Gig[k(t)\, heta(t) + k(t)^3ig[y(t) - y_{ ext{ref}}(t)ig] & & \ + \maxig\{0, ig\|\,y(t) - y_{ ext{ref}}(t)ig\| - \lambdaig\}^2 heta(t) - k(t)^3\, heta(t)ig], \ \zeta(0) &= y_1\,, \ \dot{z}(t) &= A_5\,z(t) + A_0\,\zeta(t) + f_2ig(s_2(t),y(t)ig), & z(0) = z_0\,, \ \dot{ heta}(t) &= -k(t)^2\, heta(t) + k(t)^2ig[y(t) - y_{ ext{ref}}(t)ig], & eta(0) &= heta_0\,, \ \dot{k}(t) &= \maxigg\{0, ig\|\,y(t) - y_{ ext{ref}}(t)ig\| - \lambdaigg\}^2, & k(0) = k_0\,, \ \end{aligned}$$

which has a maximal solution $(y, \zeta, z, \theta, k) : [0, t') \to \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}_{>0}$ with:

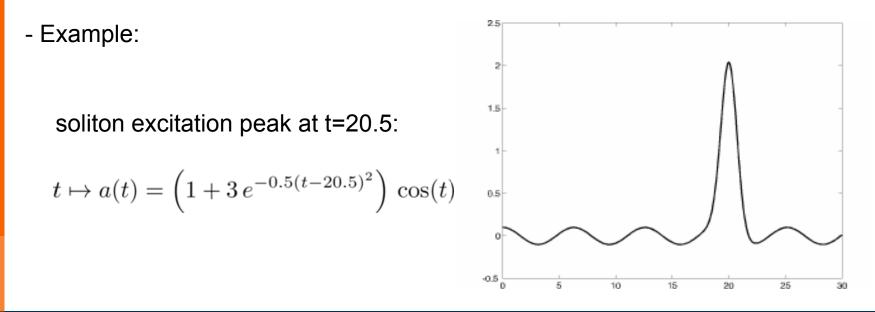
- (i) $t' = \infty$, i.e. there does not exist a finite escape time;
- (ii) $\lim_{t\to\infty} k(t)$ exists and is finite;
- (iii) the solution, $\dot{\zeta}(\cdot)$, $\dot{z}(\cdot)$, $\dot{\theta}(\cdot)$ and $u(\cdot)$ are bounded;
- $ext{(iv)} \limsup_{t o \infty} \left\| y(t) y_{ ext{ref}}(t)
 ight\| \leq \lambda;$
- $(\mathbf{v})\,\limsup_{t\to\infty}\left\|\theta(t)\right\|\leq\lambda.$

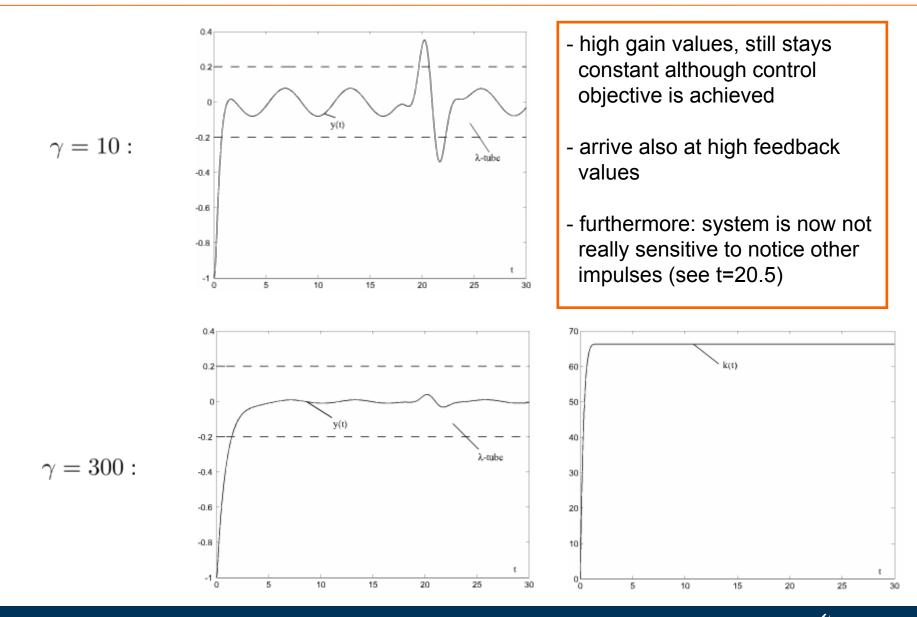
Problems

- stabilization and tracking are guaranteed / proven
- slow convergence of controller gain: introducing new parameter γ

$$\dot{k}(t) = \gamma \left(\max\left\{ 0, \left\| e(t) \right\| - \lambda \right\} \right)^2, \quad k(0) = k_0 \in \mathbb{R}$$

- this parameter strongly determines the growth of the gain parameter (sufficiently large enough)





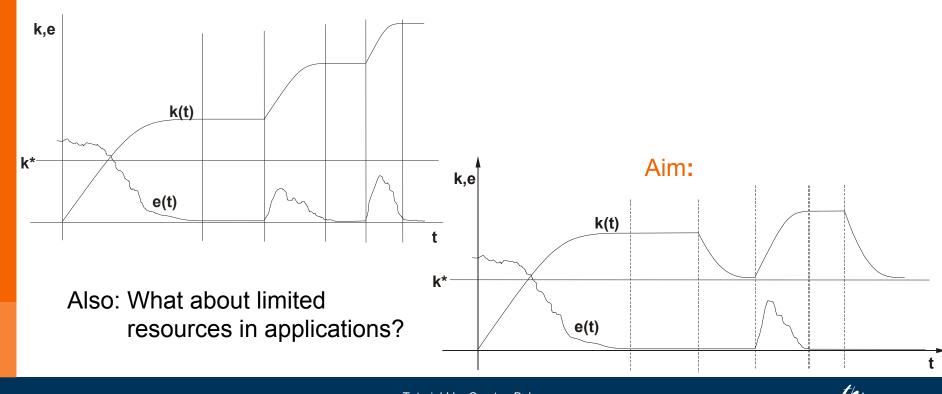
13/11/2016 Slide 18

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features" technische Universität ILMENAU

- closed-loop system is getting insensitive for changes of the stimulus
- caused by only monotonic increase of the gain parameter (classical adaptor)

$$\dot{k}(t) = \gamma \left(\max\left\{ 0, \left\| e(t) \right\| - \lambda \right\} \right)^2$$

- also do almost all controllers existing in the literature



Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features"

ILMENAU

<u>Attempt 1:</u> so-called "sigma-modification" (in the literature):

$$\dot{k}(t) = -\sigma \, k(t) + \gamma \left(\max\left\{ 0, \left\| e(t) \right\| - \lambda \right\} \right)^2, \quad \lambda > 0 \,, \sigma > 0 \,, \gamma \gg 1$$

- this adaptor achieves damping and increase of the gain k simultaneously when e is outside the tube
- this law (often) leads to chaotic behavior of the system

<u>Attempt 2:</u> first simple modification:

$$\dot{k}(t) = \begin{cases} \gamma \left(\left\| e(t) \right\| - \lambda \right)^2, & \left\| e(t) \right\| \ge \lambda, \\ -\sigma k(t), & \left\| e(t) \right\| < \lambda, \end{cases} \quad \lambda > 0, \sigma > 0, \gamma \gg 1$$

- also showing alternating increase and exponential decrease of k
- Problem:

It could happen that e rapidly traverses the tube. Then it would be inadequate to immediately decrease k after e entered the tube.

Attempt 3: Distinguishing three cases:

- 1. increasing k while e is outside the tube,
- 2. constant k after e entered the tube no longer than a pre-specified duration t_d of stay,
- 3. decreasing k after this duration has been exceeded:

$$\dot{k}(t) = \begin{cases} \gamma \left(\left\| e(t) \right\| - \lambda \right)^2, & \left\| e(t) \right\| \ge \lambda, \\ 0, & \left(\left\| e(t) \right\| < \lambda \right) \land (t - t_E < t_d), \\ -\sigma k(t), & \left(\left\| e(t) \right\| < \lambda \right) \land (t - t_E \ge t_d), \\ \lambda > 0, \sigma > 0, \gamma \gg 1, t_d > 0, t_E \text{ internal} \end{cases}$$

<u>Attempt 4:</u> In order to make the attraction of the tube stronger using different exponents for large/small distance from the tube:

$$\dot{k}(t) = \begin{cases} \gamma \left(\|e(t)\| - \lambda \right)^2, & \|e(t)\| \ge \lambda + 1, \\ \gamma \left(\|e(t)\| - \lambda \right)^{0.5}, & \lambda + 1 > \|e(t)\| \ge \lambda, \\ 0, & \left(\|e(t)\| < \lambda \right) \land (t - t_E < t_d), \\ -\sigma k(t), & \left(\|e(t)\| < \lambda \right) \land (t - t_E \ge t_d), \end{cases}$$

<u>Attempt 5:</u> One way to guarantee that e will not leave the tube after entering the tube and k is going to be decreased, is tracking of a smaller value than the desired one, for example $\varepsilon = 0.7$:

$$\dot{k}(t) = \begin{cases} \gamma \left(\left\| e(t) \right\| - \varepsilon \lambda \right)^2, & \left\| e(t) \right\| \ge \varepsilon \lambda + 1, \\ \gamma \left(\left\| e(t) \right\| - \varepsilon \lambda \right)^{\frac{1}{2}}, & \varepsilon \lambda + 1 > \left\| e(t) \right\| \ge \varepsilon \lambda, \\ 0, & \left(\left\| e(t) \right\| < \varepsilon \lambda \right) \wedge (t - t_E < t_d), \\ -\sigma k(t), & \left(\left\| e(t) \right\| < \varepsilon \lambda \right) \wedge (t - t_E \ge t_d), \end{cases} \end{cases}$$

- turns out as the to-be-favoured one

- " ε – safe λ – tracking"

- adaptive nature: arbitrary choice of the system parameters
- obvious (for numerical simulation) to choose system data fixed and known, but controllers adjust their gain parameter to each set of system data
- parameters: arbitrarily chosen, not measured, not identified from biological paradigm
 - sensor system: sensor mass m = 1, damping coefficient d = 5, spring stiffness c = 10;
 - initial values $(y(0), \dot{y}(0)) = (-a(0), -\dot{a}(0))$
 - reference signal $t \mapsto y_{ref}(t) = 0$ (rest position)
 - ground excitation $t \mapsto a(t) = \sin(2\pi t)$
 - ε -safe λ -tracker: initial gain value $k_0 = 1$, tracking tolerance $\lambda = 0.2$, decrease rate $\sigma = 1$, time of duration in tube $t_d = 3$, gain convergence parameter $\gamma = 50$, safe $\varepsilon = 0.7$

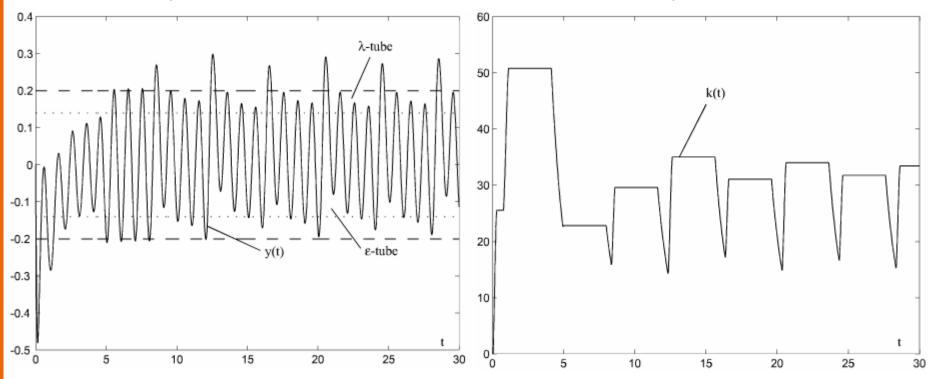
 λ -tracker / classical adaptor Output, tubes vs. t Gain parameter vs. t 0.6 20 18 0.4 λ-tube 16 k(t) 0.2 14 12 0 10 -0.2 8 y(t) ε-tube 6 -0.4 4 -0.6 2 t t 0 -0.8 10 15 20 25 30 5 10 15 20 25 0 5 30

13/11/2016 Slide 24

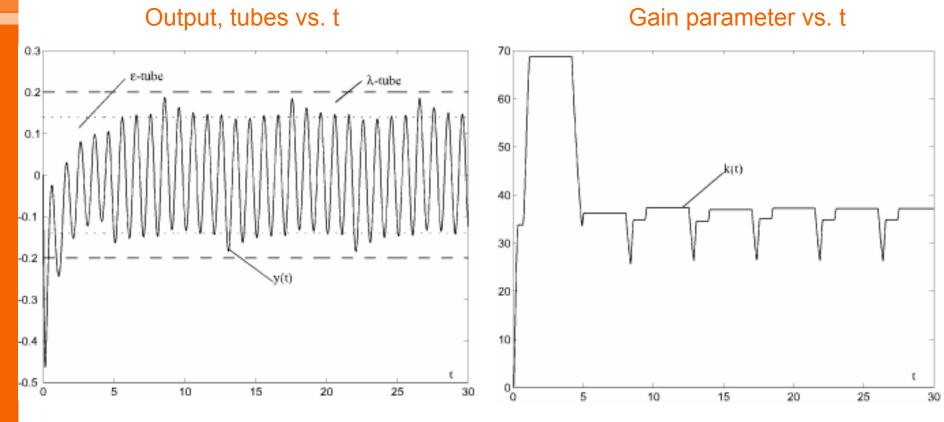
 λ -tracker / Adaptor with two exponents

Output, tubes vs. t

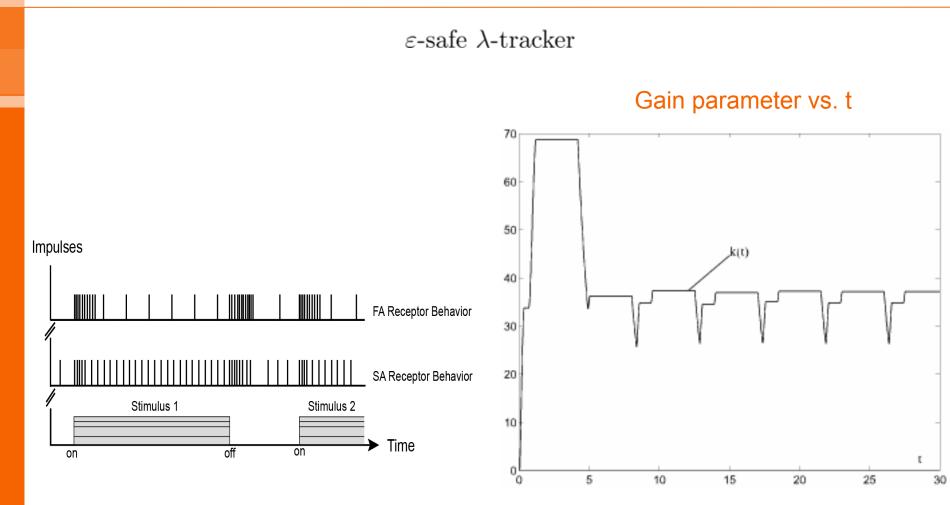
Gain parameter vs. t



 ε -safe λ -tracker



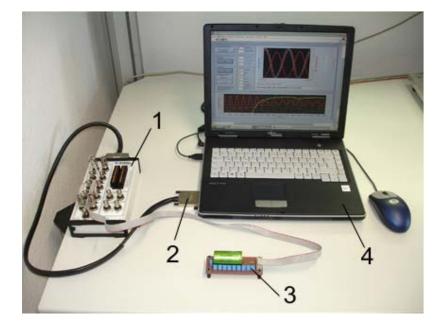
- no apparantly leaving of the λ -tube as before - steep increase of $k(\cdot)$ is due to "switching on" the controller



Gain parameter reflects the behavior of the biological paradigm

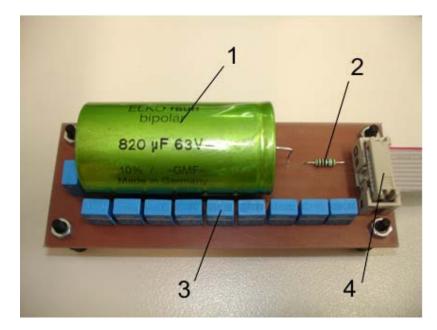
13/11/2016 Slide 27

demonstrator in form of an electrical oscillating circuit



Test rig:

- 1 I/O-system (BNC-2110),
- 2 DAQ-6036-PCMCIA-card,
- 3 demonstrator,
- 4 PC with LabView



Circuit:

- 1 capacitor ($C = 800 \, \mu F$),
- 2 resistor $(R=100\,\Omega)$,
- 3 one inductor (overall inductance $L_{ges} = 640 \ mH$),
- 4 communication to PC

Equations of motion:

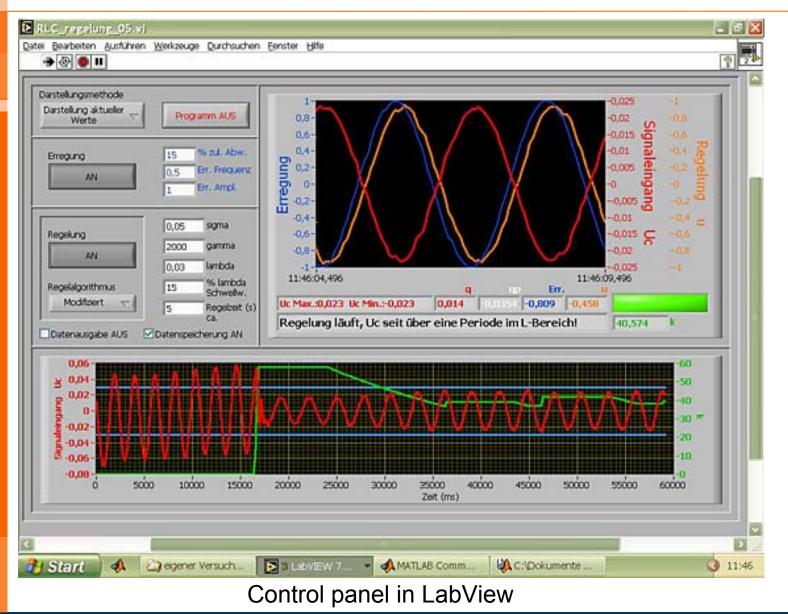
$$L\ddot{q}(t) + R\dot{q}(t) + \frac{1}{C}q(t) = U(t) + u(t).$$

Goal: adaptively compensating changes of $U(\cdot)$ by means of control input $u(\cdot)$

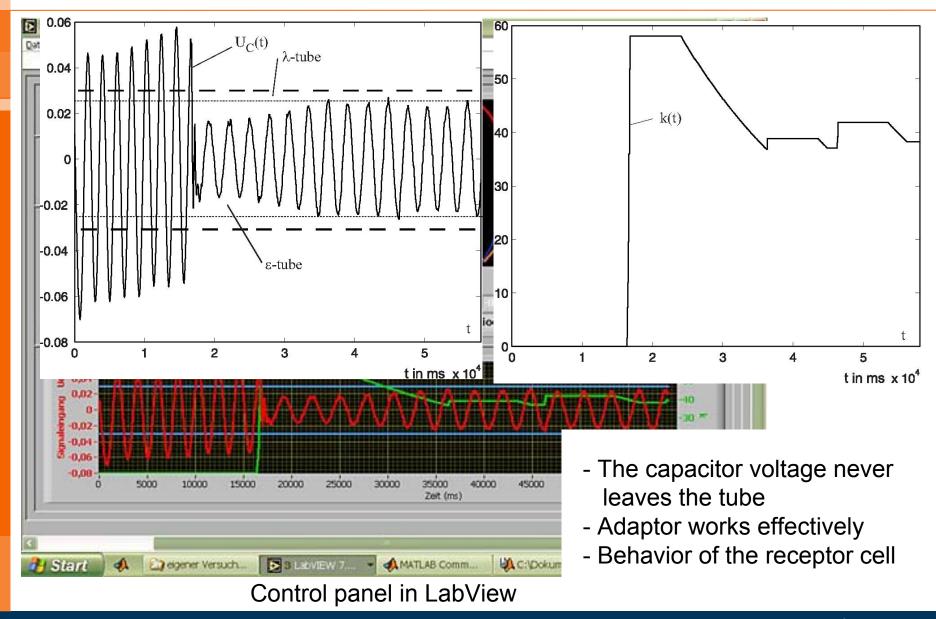
Control input: $u := U_C$ (directly control the capacity voltage, depends linearly on measured output charge $q(\cdot)$)

Parameters:

- reference signal $t \mapsto q_{\text{ref}}(t) = 0$
- excitation $t \mapsto U(t) = U_0 \sin(\omega t)$ with amplitude $U_0 = 5 V$ and frequency f = 0.5 Hz
- ε -safe λ -tracker: initial gain value $k_0 = 1$, tracking tolerance $\lambda = 0.03 V$, decrease rate $\sigma = 0.05$, time of duration in tube $t_d = 1s$, gain convergence parameter $\gamma = 100$, safe $\varepsilon = 0.7$ (much smaller tolerance)



13/11/2016 Slide 30

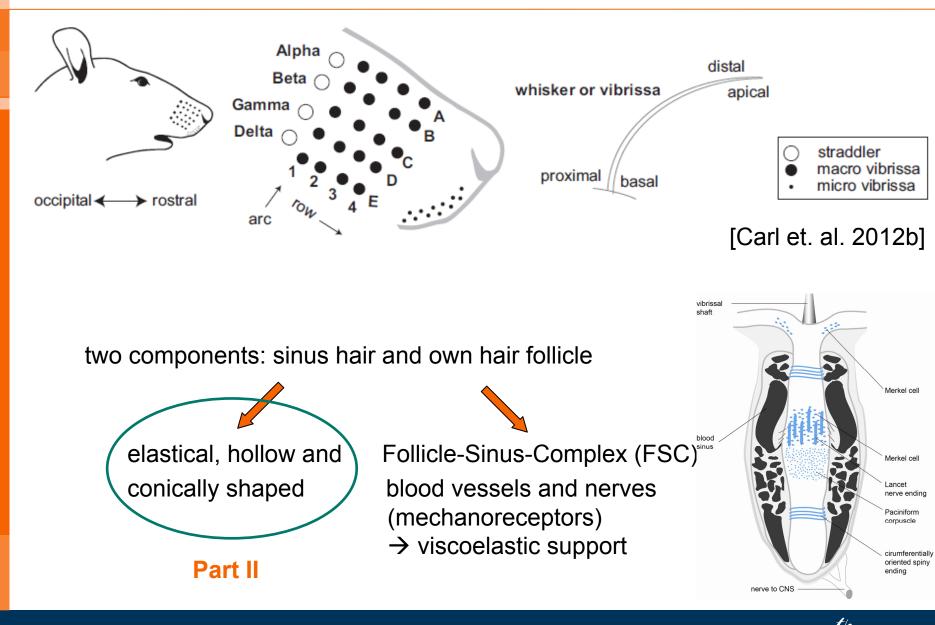


13/11/2016 Slide 30

Part I: Mechanoreceptors – 9. Conclusions

- Development of new control strategies and sensor models
- Motivated by a sensory hair receptor: permanent state of adaptation
- Behavior mimicked by an artificial sensor system via adaptive control
- Supposed high degree of unknown system parameters
- Adaptive control design to dominate an uncertain system with improved gain parameter models with minimal knowledge of system parameters
- Simple control design: rely only on structural properties, do not invoke any estimation or identification mechanism, do not depend on output derivative
- Numerical simulations and experiments have shown that the proposed controller exhibit both sensibility and adaptivity.
- The receptor model rapidly suppresses the persisting stimuli and shows good reactions to sudden changes in the stimulus.

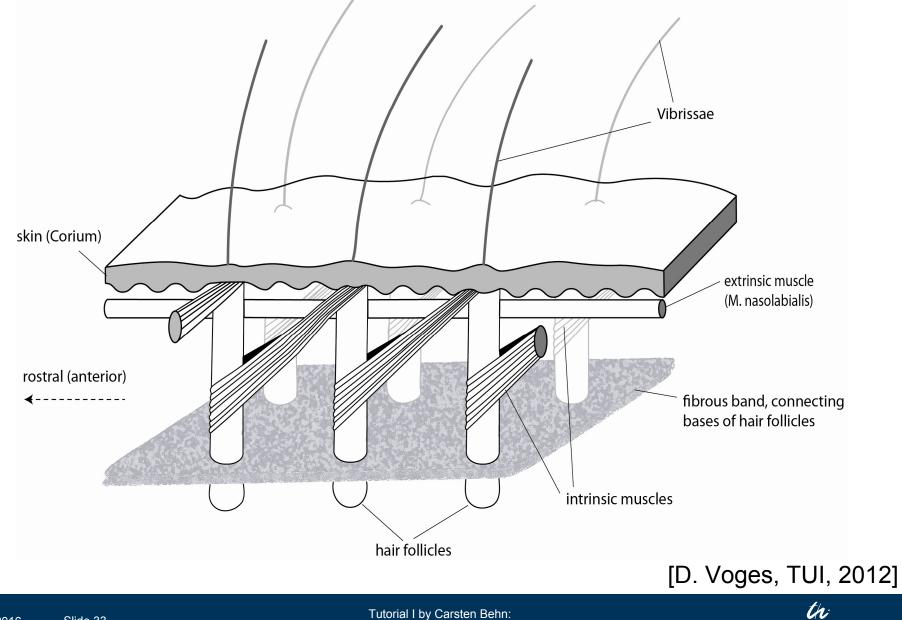
Part II: Vibrissae – 1. Introduction (Anatomy)



13/11/2016 Slide 32

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features"

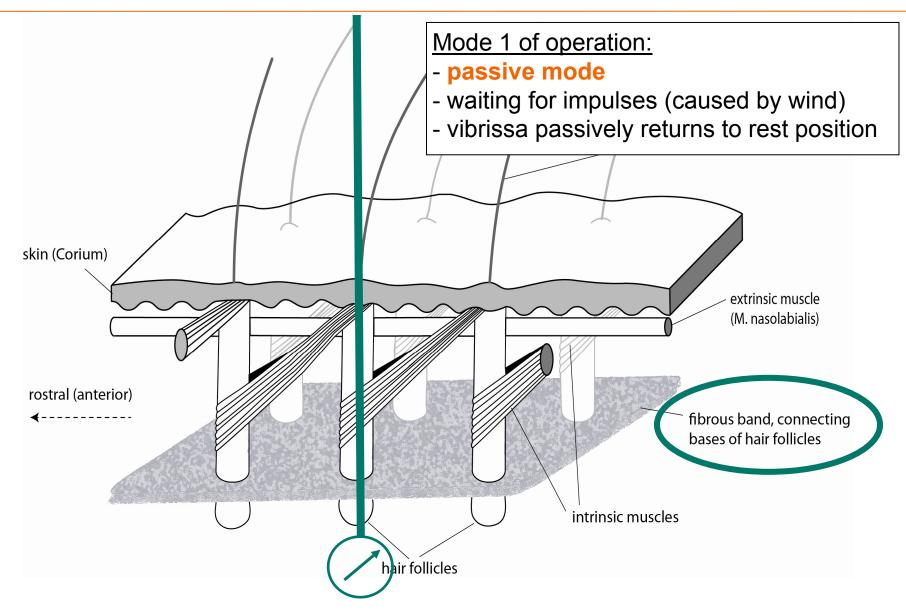
Part II: Vibrissae – 1. Introduction (Anatomy)



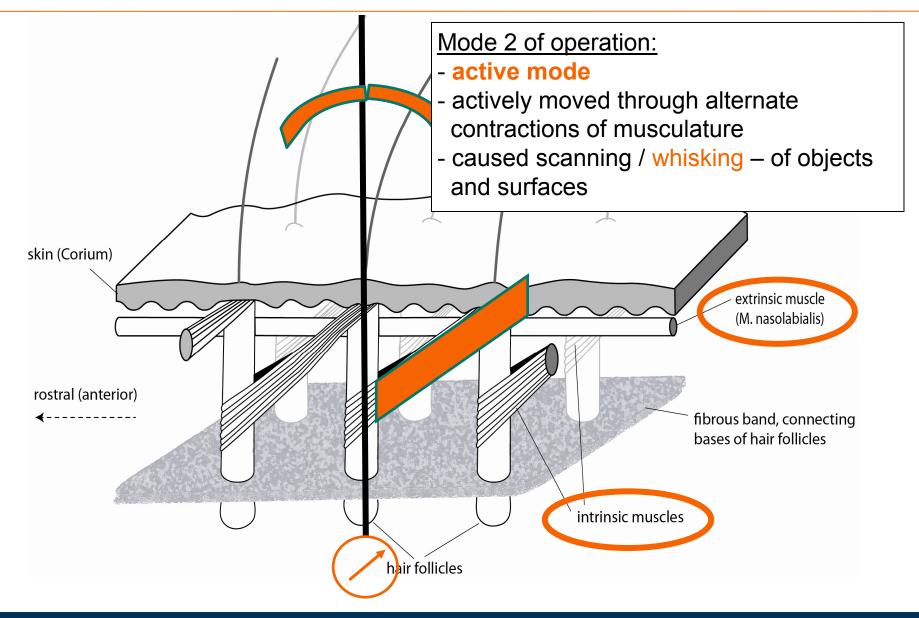
"Modeling and Control of Uncertain Systems using with Adaptive Features"

TECHNISCHE UNIVERSITÄT

Part II: Vibrissae – 2. Functionality



Part II: Vibrissae – 2. Functionality



Offering the ability to adapt its sensitivity to its environment:

- detection of vibrissa displacements by mechanoreceptors in the FSC
- a feedback loop (closed-loop control system) enables the rodents to immediately react to an object contact: they slow down the vibrissae
- depending on the mode (passive or active) and the expectations, the neuron's reaction is controlled: is being suppressed, enhanced or left unaltered
- the rodents can *probably* modify the stiffness of the vibrissa support by varying the pressure in the blood-sinus
- active whisking pattern
 - a) exploratory whisking: large amplitudes, low frequency (5-15Hz)
 - b) foveal whisking: small amplitudes, high frequency (15-25Hz)

still unclear:

How the animals convert these multiple contacts with single objects into coherent information about their surroundings?

<u>But:</u>

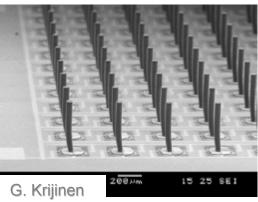
highly interesting sensory system (autonomous robotics, reliable information in dark, smoky or noisy environments)

Part II: Vibrissae – 3. Application

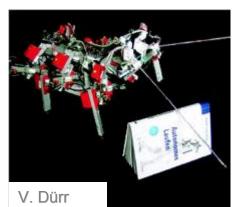
Paradigms of tactile sensors for perceptions in applications:

- quality assurance (e.g., coordinate measuring machines)
- measurements of flow rates
- detection of packaged goods on conveyor belts

Microsystem Technology

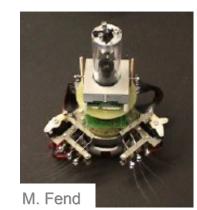


detection of flow rates

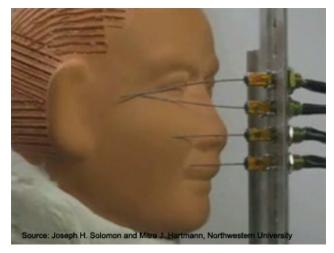


object localization

Robotics

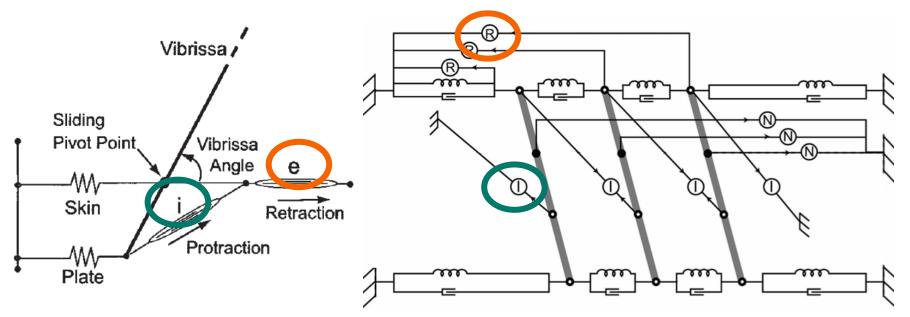


detection of texture



detection of surfaces

Rigid body model of a vibrissa / vibrissa row with musculature in [Berg, Kleinfeld 2003] and [Hill et. al. 2008]



 \oplus Implementation of the <u>intrinsic</u> and <u>extrinsic</u> musculature

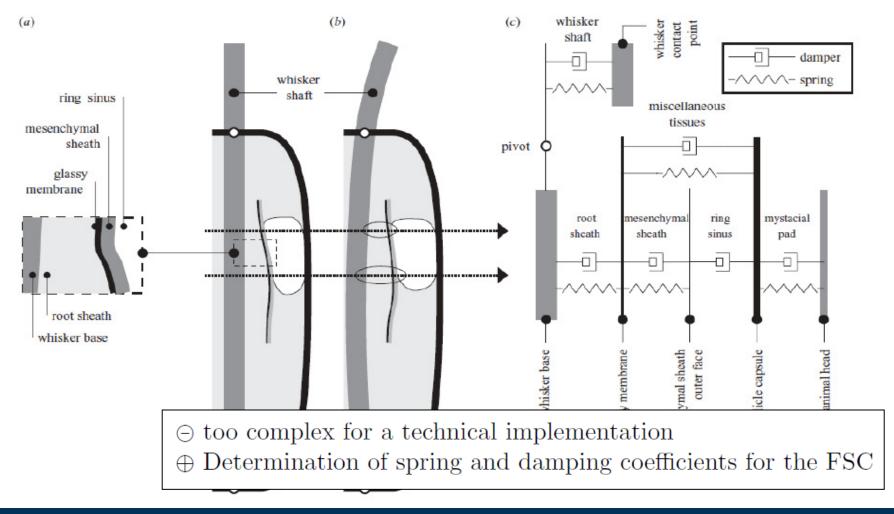
 \oplus Simulating the viscoelastic properties of the skin

 \hookrightarrow Determination of spring and damping coefficients for the skin

- \odot Neglecting the viscoelastic properties of the FSC
- \odot Connection between the follicles

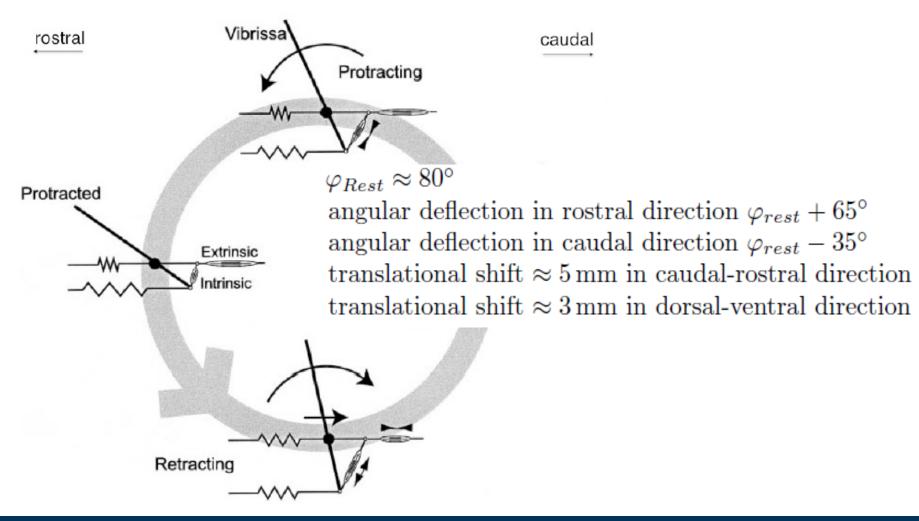
 \hookrightarrow leads to complex control strategy and high control effort

Rigid body model of the vibrissa / Simulating the compliance of the FSC in [Mitchinson et. al. 2004], [Mitchinson et. al. 2007]



13/11/2016 Slide 40

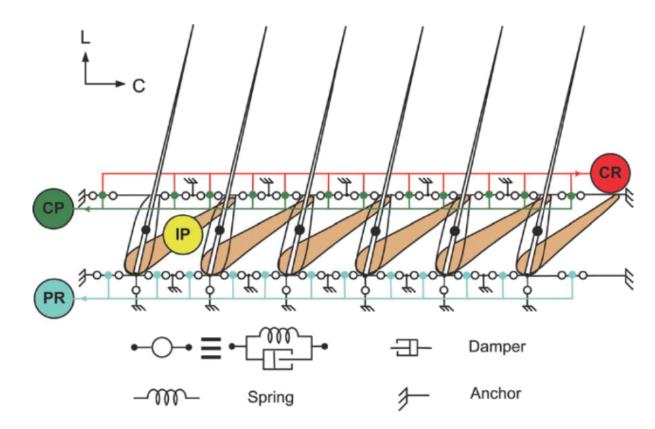
Rigid body model of a vibrissa for determination of the range of movement of the vibrissa in [Berg, Kleinfeld 2003]



Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features"

Biomechanical model representing one vibrissal row in [Haidarliu et al. 2010] and [Haidarliu et al. 2011]

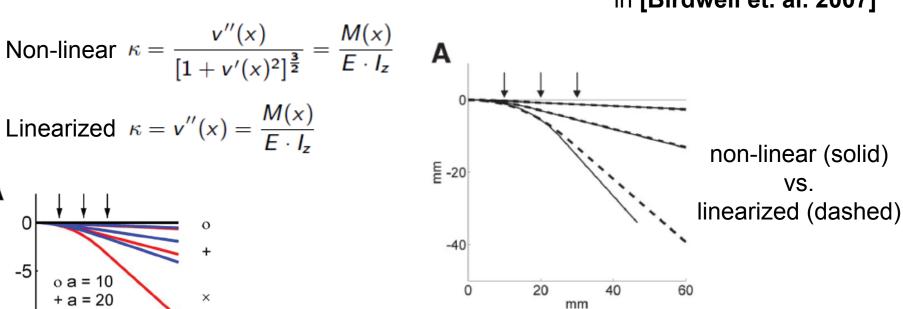
Goal: modeling the muscle-tissue-system in the mystacial pad



just for illustration, model is too complex to investigate control algorithm, no focus

13/11/2016 Slide 42

Analyzing the bending behavior of natural vibrissae using beams in [Birdwell et. al. 2007]



 \oplus suitable to analyze the bending behavior

- \odot Linearized model: only valid for small deflections
- \oplus Consideration of the conical shape of the vibrissa
- \odot Neglecting the support's compliance
- \oplus Finding: Shape of the beam influences the bending behavior \hookrightarrow not negligible

Slide 43 13/11/2016

0

Α

шШ

o a = 10

× a = 30

cylindrical (blue)

VS.

conical (red)

50

mm

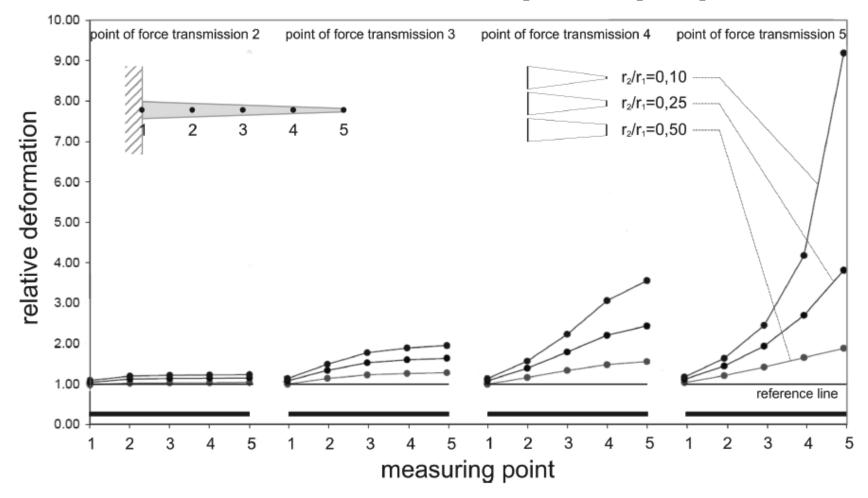
Determination of various vibrissa parameters using the bending behavior in [Birdwell et. al. 2007]

heuristically determined parameters of various vibrissae:

- simulated bending behavior of beams
- photos of deformed vibrissa
- varying Young's modulus if graphs do not match

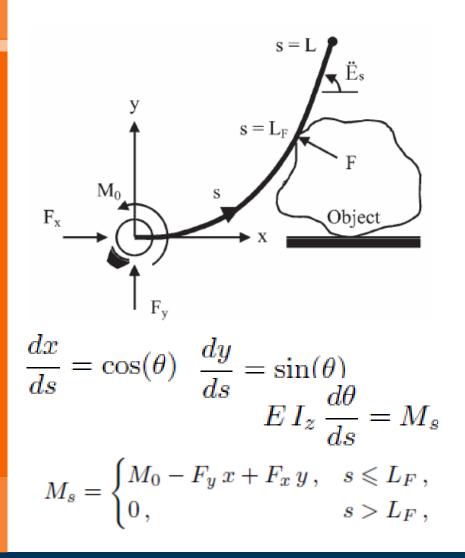
Vibrissa	Arc length in mm	Base diameter in $\mu {\rm m}$	E modulus in GPa
β	66.2	225	1.40
γ	60.3	199	3.75
A1	51.7	160	2.75
E2	48.1	232	1.90
B2	41.1	169	2.30
E3	33.3	189	3.90
C3	21.5	119	6.25

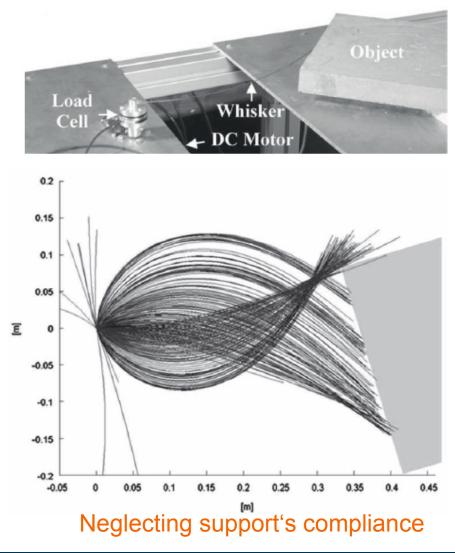
Investigating the influence of the vibrissa's shape to the bending behavior in [Carl 2009] and [Carl et. al. 2012a]



13/11/2016 Slide 45

Model for active sensing in [Scholz, Rahn 2004]

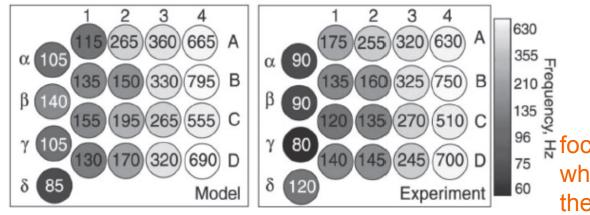




13/11/2016 Slide 46

Model to determine the influence of the support on the eigenfrequencies in [Neimark et. al. 2003] and [Andermann et. al. 2004]

- infra-red measurements of the first eigenfrequency (EF) of various natural vibrissae
- → connection between first EF and length of vibrissa (length increase, EF decrease)
- → hence systematical arrangement topologically distributed sensitivity in the vibrissa array
- mechanical model of a thin, conical beam and present dynamical investigations (massive influence of the support on the EF \rightarrow obvious)

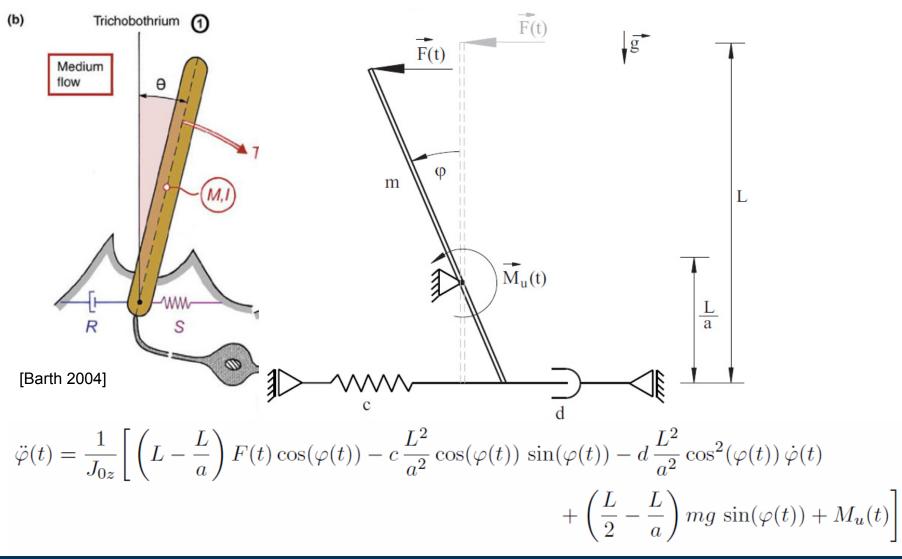


- but: determination only of the first EF of the vibrissae

focus on supports which do not match the real objects sufficiently

13/11/2016 Slide 47

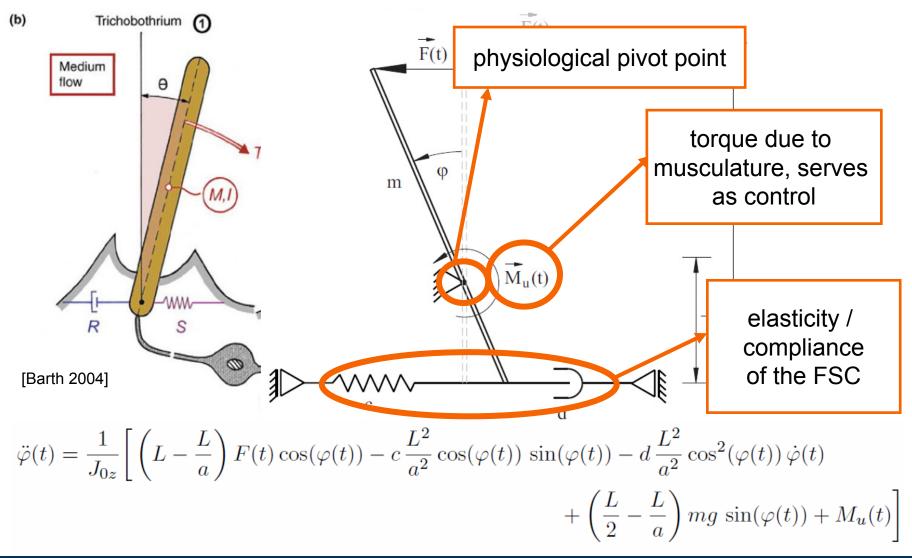
Single vibrissa system with DoF=1



لين TECHNISCHE UNIVERSITÄT ILMENAU

13/11/2016 Slide 48

Single vibrissa system with DoF=1



13/11/2016 Slide 48

Goal:

Control the vibrissa system in a chosen mode of operation: passive or active

Problem:

- many open-loop and closed-loop controls are based on exactly known parameters

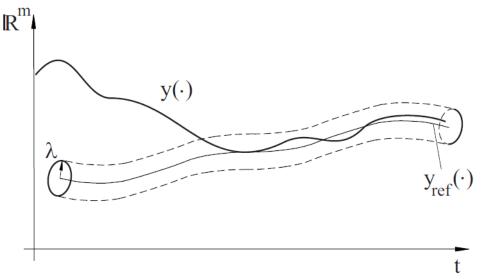
- here: suppose uncertain system (due to biological complexity)
 - unknown system parameters
 - only structural properties known

What to do if the system is not known precisely?

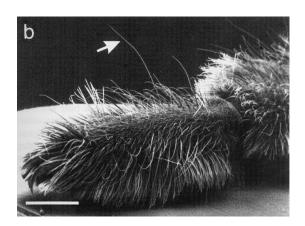
Solution:

Design an adaptive controller, which learns from the behavior of the system, so automatically adjusts its parameters and achieves

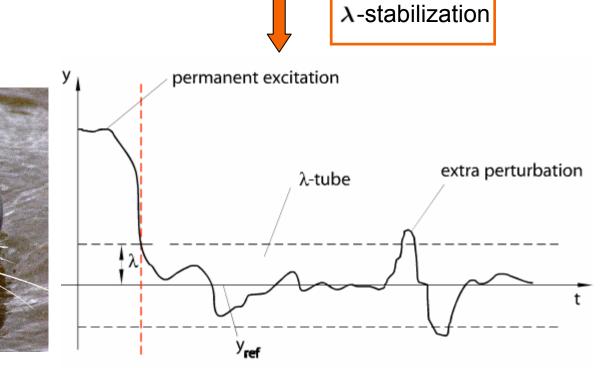
 λ -tracking



Passive Mode

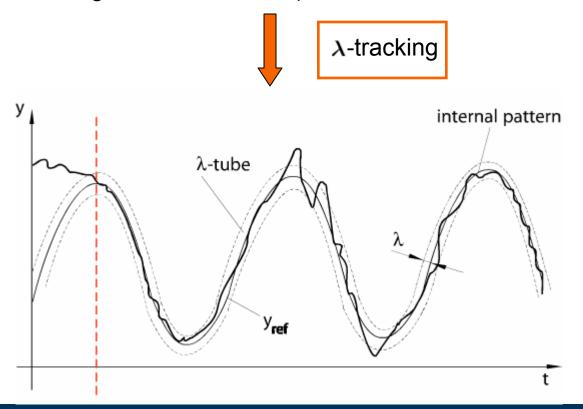


- stabilize the system under permanent excitation
- while enabling to detect external extra-perturbations (e.g. sensory contact, detect wake of swimming fish)



Active Mode

- track an internally generated oscillatory motion pattern
- enable the system to recognize external disturbances of this pattern (caused, e.g., by wind or surface contact scanning of surface texture)



Simulations

<u>vibrissa:</u> $m = 0.000\,003\,\text{kg}, c = 5.7\,\frac{\text{N}}{\text{m}}, d = 0.2\,\frac{\text{Ns}}{\text{m}}, L = 0.04\,\text{m}, a = \frac{L}{10} = 0.004\,\text{m}$

environment: $t \mapsto F(t) = 0.1 \cos(t) + 2 e^{-(t-20)^2} N$ (small permanent oscillation with a gust of wind)

modes of operation: passive mode

13/11/2016

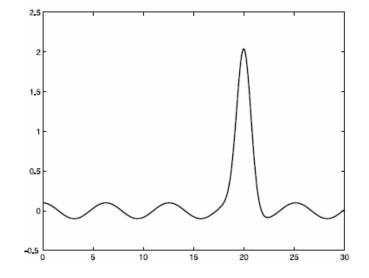
 $t \mapsto \varphi_{\text{ref0}}(t) = 0 \text{ rad}$

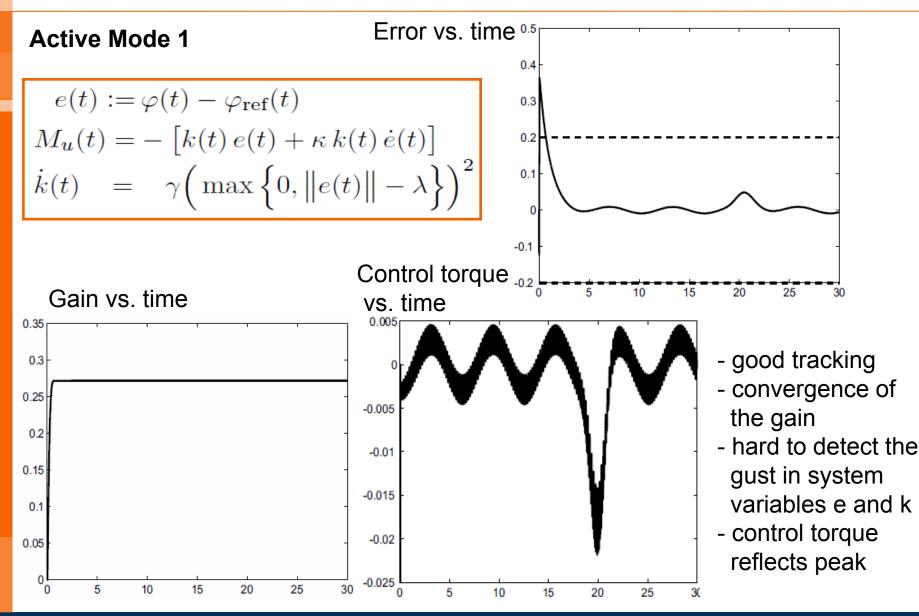
active mode 1 – exploratory whisking

 $t \mapsto \varphi_{\text{ref1}}(t) = 0.8 \sin(2\pi 5 t) \text{ rad}$

active mode 2 – foveal whisking

 $t \mapsto \varphi_{\text{ref2}}(t) = 0.2 \sin(2\pi 25 t) \text{ rad}$

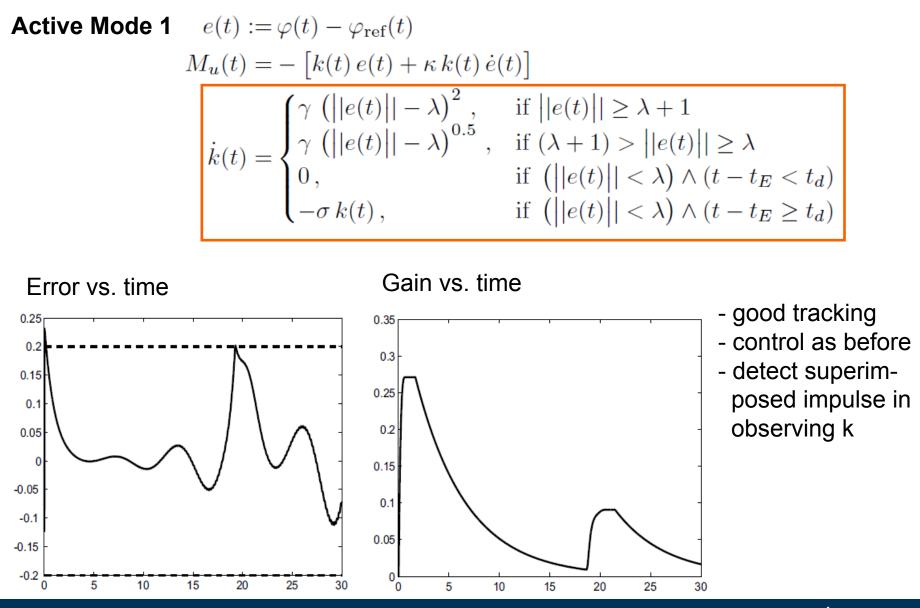




13/11/2016 Slic

Slide 53

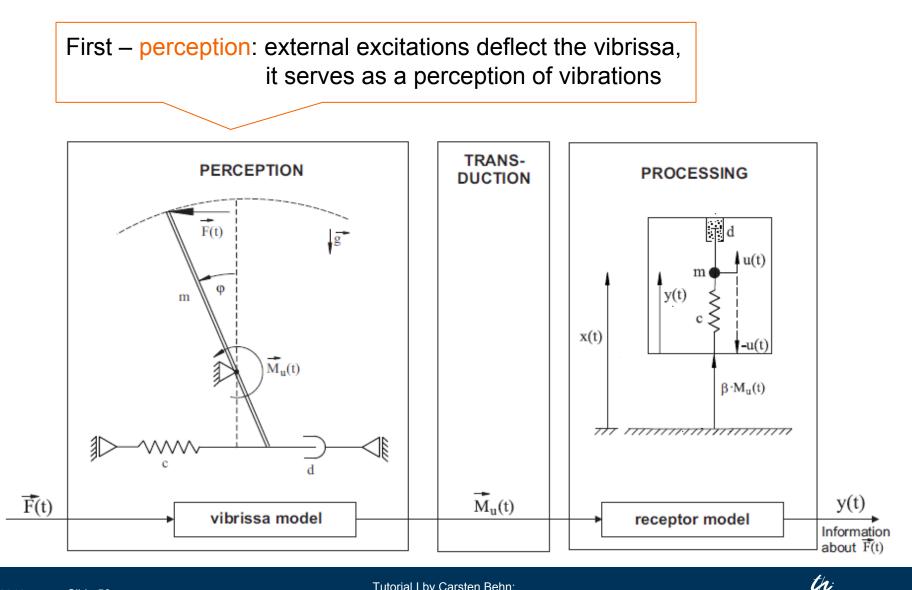
Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features"



13/11/2016 Slide 54

Short summary:

- adaptive control is promising in application to vibrissa systems
- it allows for both modes of operation (passive or active)
- not easy to detect solitary excitations
- somestimes observe e, k or control input
- some identification techniques to uniformly observe one observable
 → which one?
- Stage 2: seperate extra receptor from vibrissa system, as in paradigm

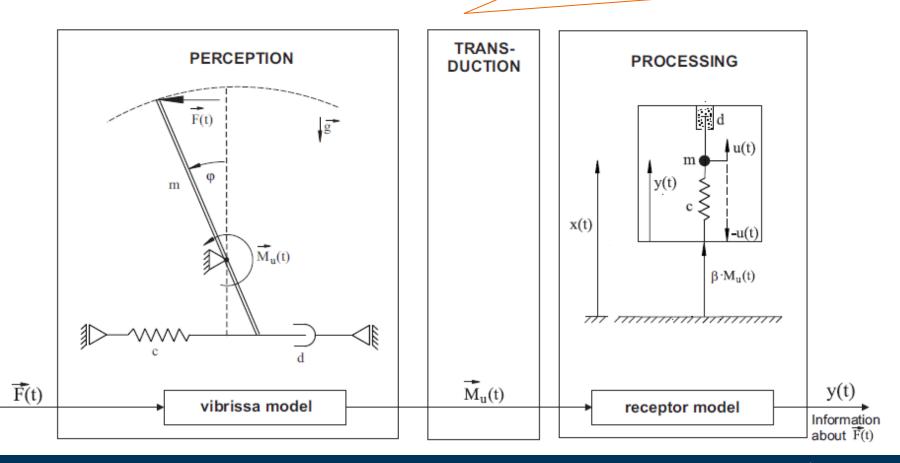


13/11/2016 Slide 56

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features"

TECHNISCHE UNIVERSITÄT

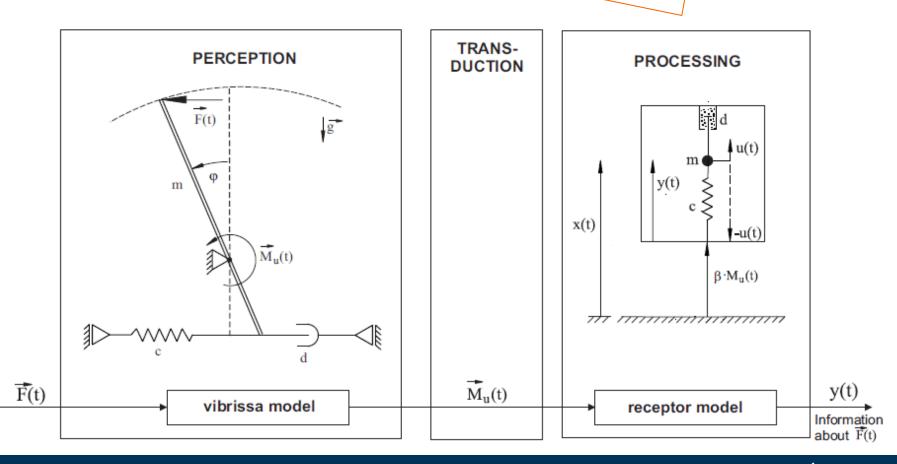
Second - transduction: control the blood supply to achieve passive/active mode, information about the needed supply transmitted to receptor cells



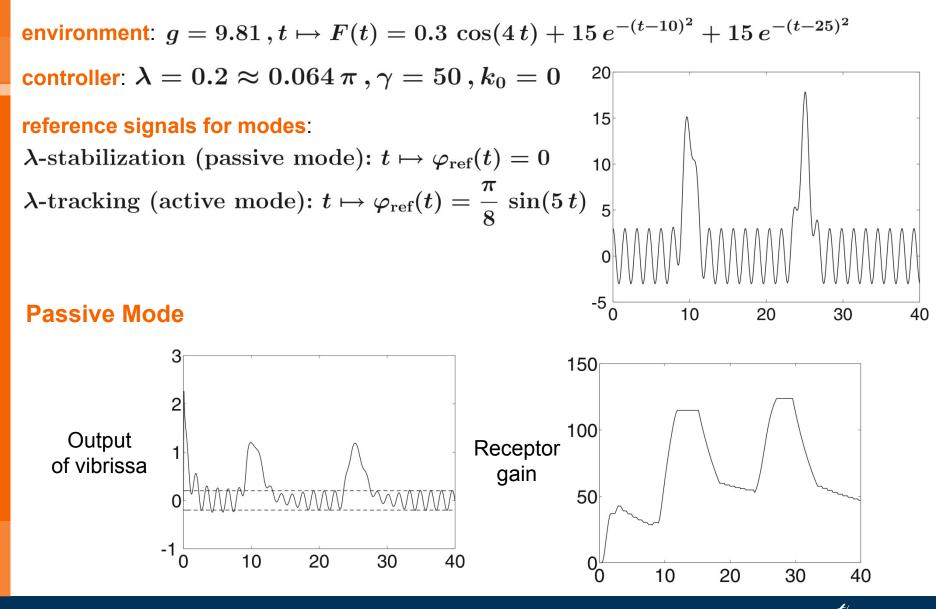
13/11/2016 Slide 56

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features" technische Universität Ilmenau

Third – processing: information analyzed in a receptor cell in such a way to identify some important information about the excitation



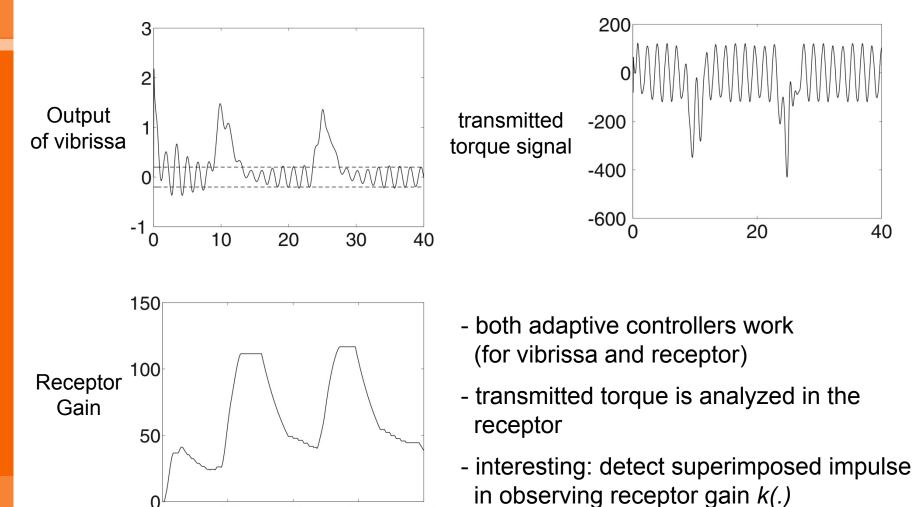
13/11/2016 Slid<u>e 56</u>



13/11/2016 Slide 57

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features" technische Universität ILMENAU

Active Mode



0

10

20

30

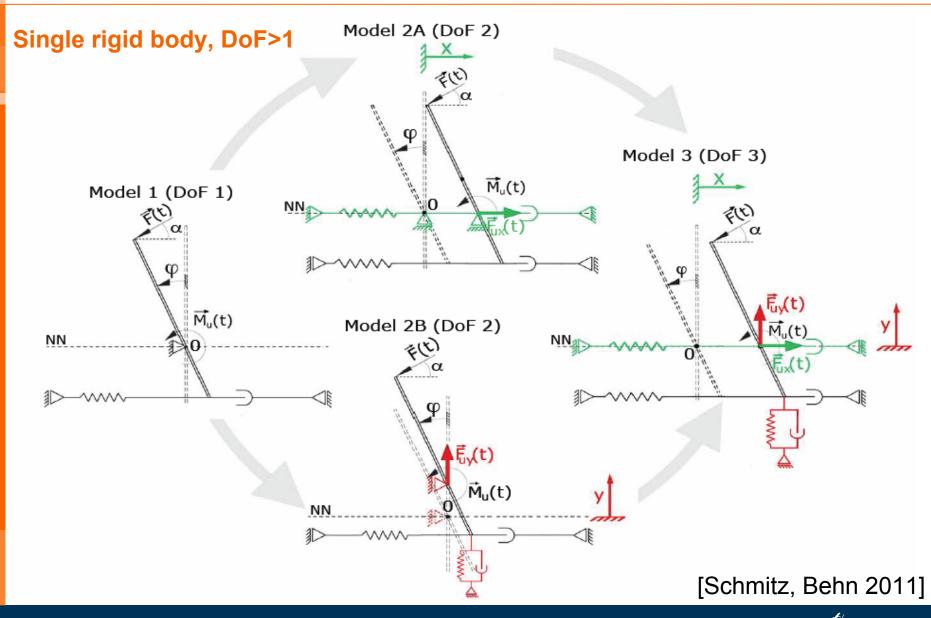
Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features"

40

Short summary:

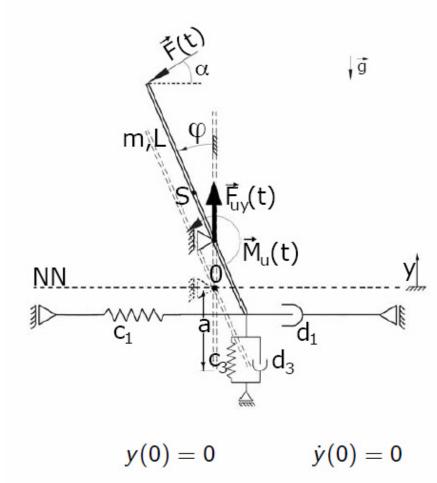
- numerical simulations have shown that this system exhibit also sensibility and adaptivity
- the vibrissa system reacts well to numerous forces
- disturbing forces can clearly be recognized in observing the course of the control torque → suitable observable as input to receptor model
- the receptor model rapidly suppresses the persisting stimuli and shows good reactions to sudden deflections
- main outcome: the "output" of the receptor y, k or u is simultanously immanent in the control torque!
 - \rightarrow further investigations will focus on the perception model
- Drawback: perception of horizontal forces only
- New goal: models for identification of disturbing forces with a larger range of angles of attack

13/11/2016 Slide 59



13/11/2016 Slide 60

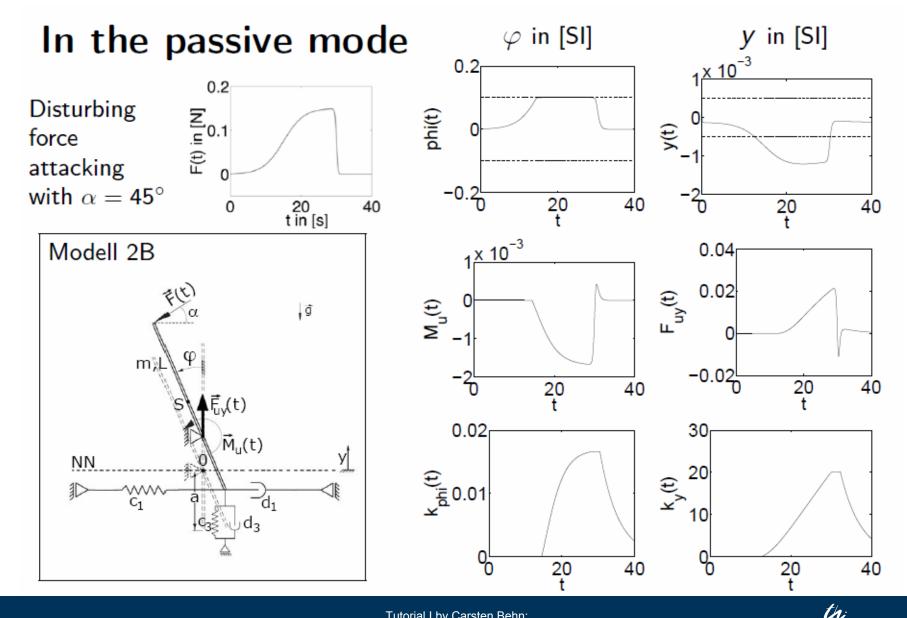
Equations of motion for Model 2B



$$\ddot{y}(t) = \frac{1}{m} \left[m \left(\frac{L}{2} - a \right) \left[\ddot{\varphi}(t) \sin(\varphi(t)) + \dot{\varphi}(t)^2 \cos(\varphi(t)) \right] - d_3 \dot{y}(t) - c_3 y(t) - mg - F(t) \sin(\alpha) + F_{uy}(t) \right]$$

$$\begin{split} \ddot{\varphi}(t) &= \frac{1}{J_{0z}} \left[m \left(\frac{L}{2} - a \right) \left[\ddot{y}(t) \sin(\varphi(t)) \right. \\ &+ g \sin(\varphi(t)) \right] - d_1 a^2 \cos^2(\varphi(t)) \dot{\varphi}(t) \\ &- c_1 a^2 \sin(\varphi(t)) \cos(\varphi(t)) \\ &+ (L - a) F(t) \cos(\varphi(t) - \alpha) + M_u(t) \right] \\ \left. \varphi(0) &= 0 \qquad \dot{\varphi}(0) = 0 \end{split}$$

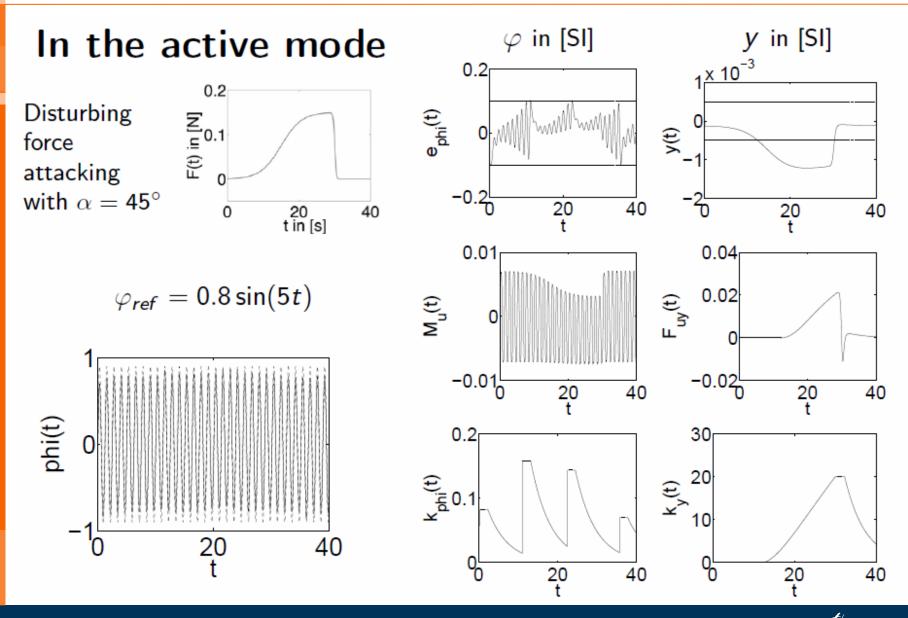
13/11/2016 Slide 61



13/11/2016 Slide 62

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features"

TECHNISCHE UNIVERSITÄT



13/11/2016 Slide 63

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features" TECHNISCHE UNIVERSITÄT

Goal: identification of disturbing forces attacking with any angle

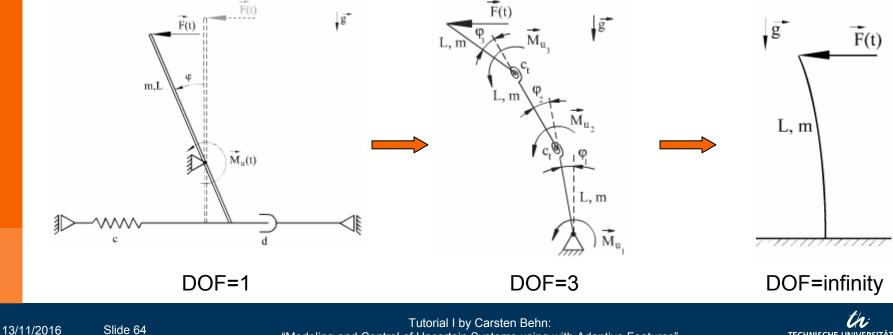
Results: with model 2B disturbance forces can be identified in the passive and active mode for angles of attack reaching from $\alpha = 0^{\circ}$ tc 90°

 \rightarrow increase elasticity, possible in 2 ways:

a) rigid multi-body system models - Stage 4

b) elastic beam models:

investigation of mechanical models with infinte DoF – Stage 5



"Modeling and Control of Uncertain Systems using with Adaptive Features"

ILMENAU

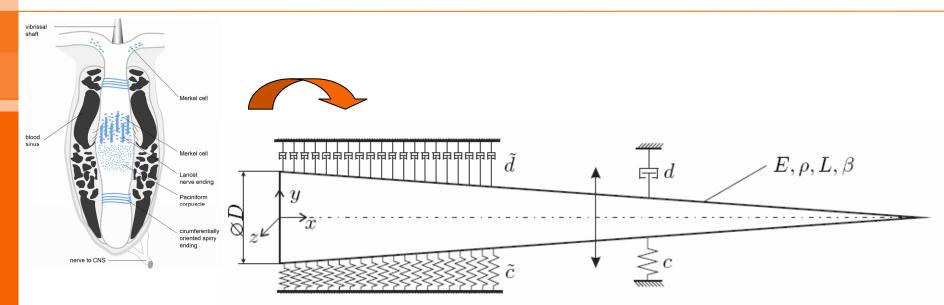
Remind: Vibrissa is elastical, hollow and conically shaped

Function hypotheses in literature:

- The elasticity and the conical shape of the hair are relevant for the functionality of the vibrissa.
- The viscoelastic properties of the support (FSC) are controlled by the blood pressure in the blood sinus.
- The vibrissae are excited with or close to their resonance frequencies during the active mode.

Global goal:

- computation of EFs for dimensioning and / or parameter identification (e.g., external forces)
- maybe observing shift of the spectrum of EFs (due to controllable FSC)



Intermediate goals:

- investigating innovative models of a flexible vibrissa with a viscoelastic support (discrete or continuously distributed)
- analytical computation of EFs of beams depending on material and geometry
- numerical verification using FEM / MBS
- drawing conclusion to complex systems

Example: PDE: $\ddot{v}(x,t) + k^4 v'''(x,t) = 0$, with $k^4 := \frac{E I_z}{2}$, ρ,Α,I_z,E,L **BC**: (1): $v(0,t) = 0 \ \forall t \ge 0$ × 🛉 (2): $v'(0,t) = 0 \ \forall t \ge 0$ $(3): v''(L,t) = 0 \ \forall t \ge 0$ (4): $v'''(L,t) E I_z - c v(L,t) = 0 \ \forall t \ge 0$ EVE: $\lambda^3 L^3 (1 + \cosh(\lambda L) \cos(\lambda L))$ $+ \gamma_c \left(\cosh(\lambda L) \sin(\lambda L) - \cos(\lambda L) \sinh(\lambda L) \right) = 0$ with $\gamma_c := \frac{c}{c_S} = \frac{c}{\frac{E I_z}{I^3}} = \frac{c L^3}{E I_z}$ Results: steel beam B2 vibrissa jfi λ_i fi ω_i ω_i 1 2.010653.008 103.929843.189 62.369 $\gamma_c = 1$ 2 $4.704 \pm$ 3576.197569.1694617.724 341.5663 7.8579977.433 1587.95812883.248 952.955 $10.996 \pm$ 4 19544.1813110.55325236.2031866.685

5

14.138

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features"

32305.127

5141.521

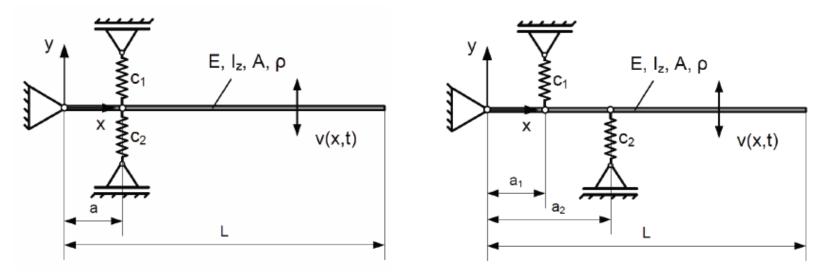
41713.630

3085.496

ILMENAU

th;

First steps: conservative systems



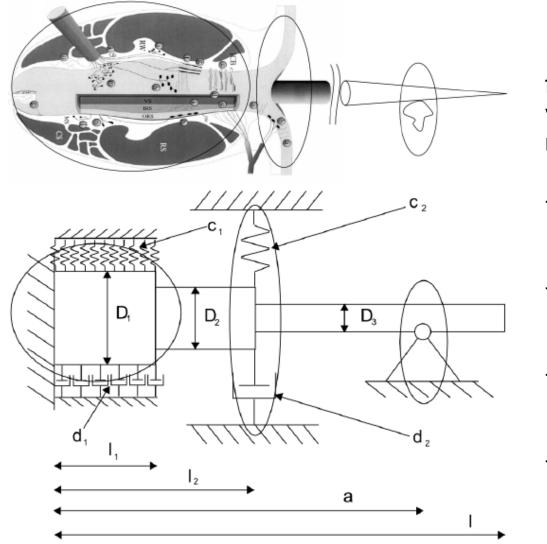
Modeling: - one and two levels of support compliance: FSC and skin

Drawback: - pivot does not match reality

- no damping is considered

Findings (obvious as in literature):

- massive influence of the support on the eigenfrequencies
- massive influence of the conical and hollow shape



Investigating the influence of fundamental properties of the vibrissa from biology to the natural frequencies:

- conical shape /

various cross-sections

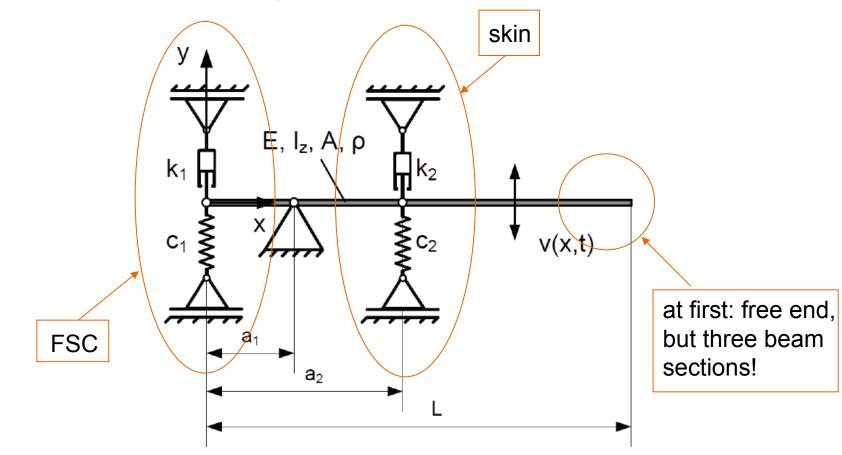
- viscoelastic foundation

due to FSC

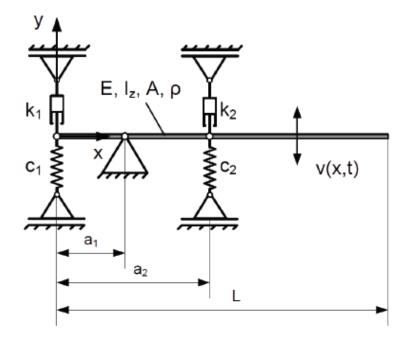
- discrete viscoelastic support due to skin

- bearing due to (sudden) object contact

Next steps: non-conservative systems



12 boundary condition \implies MVR \implies EVE (analytically) \implies EV & NF (numerically)

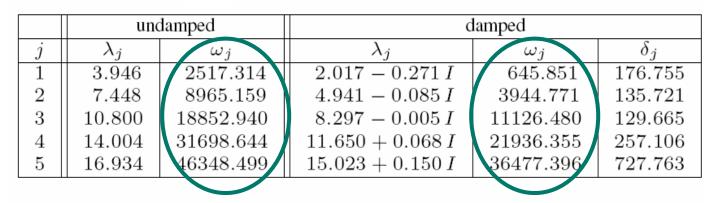


Parameters of B2-vibrissa in [Neimark et. al. 2003]

$$\begin{array}{l} a_1 = 3 \ \mathrm{mm} \,, a_2 = 4 \ \mathrm{mm} \\ r = 0.1 \ \mathrm{mm} \,, \ \mathrm{and} \ L = 40 \ \mathrm{mm} \\ c_1 = c_{\mathrm{FSC}} = 80 \ \frac{\mathrm{N}}{\mathrm{m}} \,, k_1 = d_{\mathrm{FSC}} = 0.5 \ \frac{\mathrm{Ns}}{\mathrm{m}} \\ c_2 = c_{\mathrm{skin}} = 5.7 \ \frac{\mathrm{N}}{\mathrm{m}} \,, \ \mathrm{and} \ k_2 = d_{\mathrm{skin}} = 0.2 \ \frac{\mathrm{Ns}}{\mathrm{m}} \\ E = 2.3 \ \mathrm{GPa} \ \mathrm{and} \ \varrho = 238.732 \ \frac{\mathrm{kg}}{\mathrm{m}^3} \end{array}$$

Tutorial I by Carsten Behn:

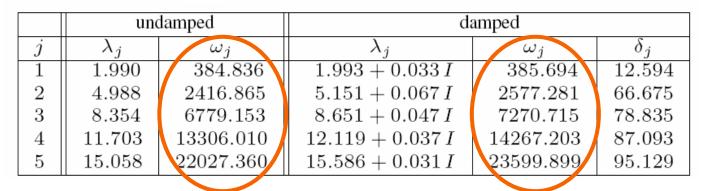
TABLE CALCULATION FOR THE STEEL BEAM.



as expected

TABLE

CALCULATION FOR THE B2 VIBRISSA.



unlike behavior:

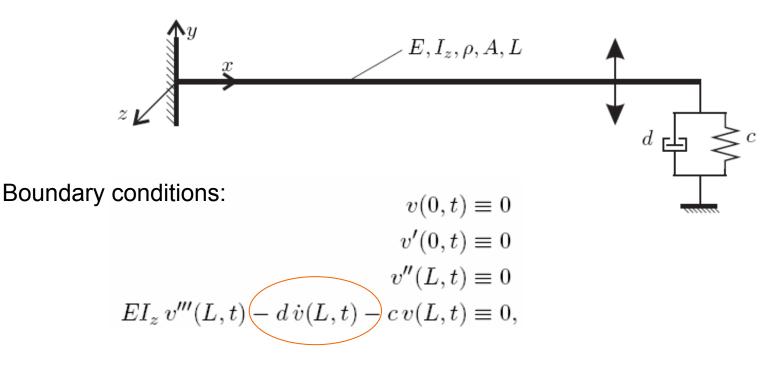
increasing natural frequencies if damped

Short summary:

- \odot Neglecting the conical shape of the vibrissa
- \oplus Consideration of the support's compliance
 - \cdot at skin level
 - \cdot at the level of the FSC
- \oplus Finding: massive influence of the support on the natural frequencies
- \oplus Finding: influence of damping elements in the support
 - \hookrightarrow massive for the 1st natural frequency
 - \hookrightarrow but: unlike behavior of the natural frequencies

Analyze simple systems to understand effects of boundary damping ...

Simplification: model to analyze discrete damping effects boundary viscoelastic end-support



4-th boundary condition in form of a differential equation!
→ manipulation of this equation

$$-E^{2}I_{z}^{2}\left(\mathbf{X}'''(L)\right)^{2} + 2EI_{z}c\mathbf{X}(L)\mathbf{X}'''(L) - c^{2}\mathbf{X}^{2}(L) - d^{2}\underline{\lambda}^{4}k^{4}\left(\mathbf{X}(L)\right)^{2} = 0$$

 $E^{2}I_{z}^{2} \left(\mathbf{X}''' \left(L \right) \right)^{2} - 2EI_{z}c \,\mathbf{X}(L) \,\mathbf{X}'''(L) + c^{2} \,\mathbf{X}^{2}(L) = \left[EI_{z} \,\mathbf{X}''' \left(L \right) - c \,\mathbf{X}\left(L \right) \right]^{2}$ $\Rightarrow \qquad \left[EI_{z} \,\mathbf{X}''' \left(L \right) - c \,\mathbf{X}\left(L \right) \right]^{2} = -d^{2}\underline{\lambda}^{4}k^{4} \,\left(\mathbf{X}\left(L \right) \right)^{2}$

final form of 4th equation: $EI_z X'''(L) - c X(L) = \pm i d \underline{\lambda}^2 k^2 X(L)$ matrix of the matrix-vector-representation:

$$\mathbf{A}(\underline{\lambda}) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & \underline{\lambda} & 0 & \underline{\lambda} \\ \overline{EI_z \sin(\underline{\lambda}L)\underline{\lambda}^2} & -\overline{EI_z \cos(\underline{\lambda}L)\underline{\lambda}^2} & \overline{EI_z \sinh(\underline{\lambda}L)\underline{\lambda}^2} & \overline{EI_z \cosh(\underline{\lambda}L)\underline{\lambda}^2} \\ \pm \mathrm{i}\,d\underline{\lambda}^2 k^2 \cos(\lambda L) & \pm \mathrm{i}\,d\underline{\lambda}^2 k^2 \sin(\lambda L) & \pm \mathrm{i}\,d\underline{\lambda}^2 k^2 \cosh(\lambda L) & \pm \mathrm{i}\,d\underline{\lambda}^2 k^2 \sinh(\lambda L) \\ -c\cos(\underline{\lambda}L) & -c\sin(\underline{\lambda}L) & -c\sin(\underline{\lambda}L) & -c\sin(\underline{\lambda}L) \\ -\cos(\underline{\lambda}L)\underline{\lambda}^2 & -\sin(\underline{\lambda}L)\underline{\lambda}^2 & \cosh(\underline{\lambda}L)\underline{\lambda}^2 & \sinh(\underline{\lambda}L)\underline{\lambda}^2 \end{pmatrix}$$

Equation to determine the eigenvalues:

$$\det (\mathbf{A} (\underline{\lambda})) = -EI_{z}\underline{\lambda}^{3} - EI_{z}\cos(\underline{\lambda}L)\cosh(\underline{\lambda}L)\underline{\lambda}^{3}$$

$$\pm i dk^{2}\sin(\underline{\lambda}L)\cosh(\underline{\lambda}L)\underline{\lambda}^{2} - c\sin(\underline{\lambda}L)\cosh(\underline{\lambda}L)$$

$$\mp i dk^{2}\cos(\underline{\lambda}L)\sinh(\underline{\lambda}L)\underline{\lambda}^{2} + c\cos(\underline{\lambda}L)\sinh(\underline{\lambda}L) = 0$$

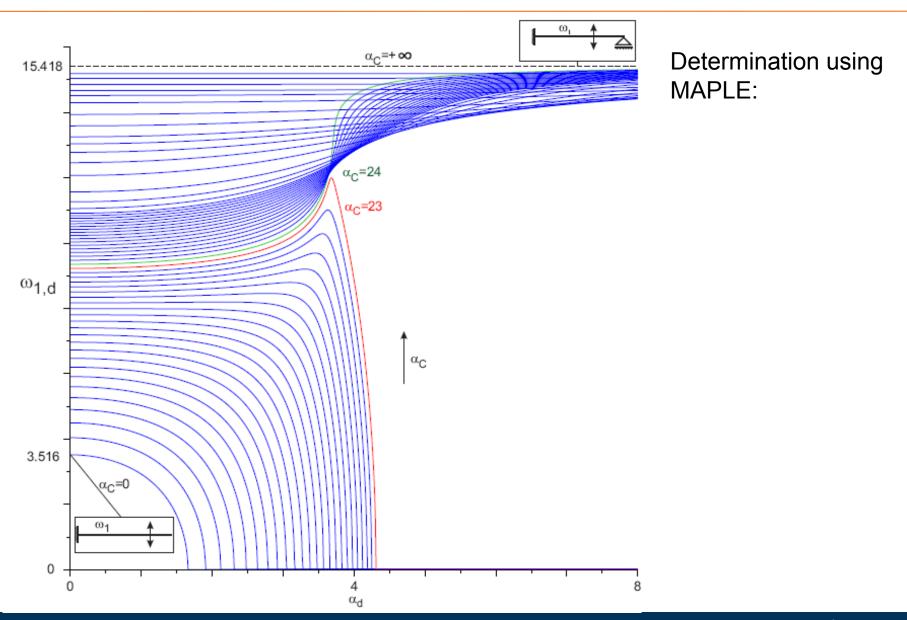
First test: equation exhibits known eigenvalue-equations of the following systems

$$z \xrightarrow{y} E, I_z, \rho, A, L \xrightarrow{y} Z \xrightarrow{y} E, I_z, \rho, A, L \xrightarrow{y} Z \xrightarrow{y} Z \xrightarrow{E} Z \xrightarrow{E}$$

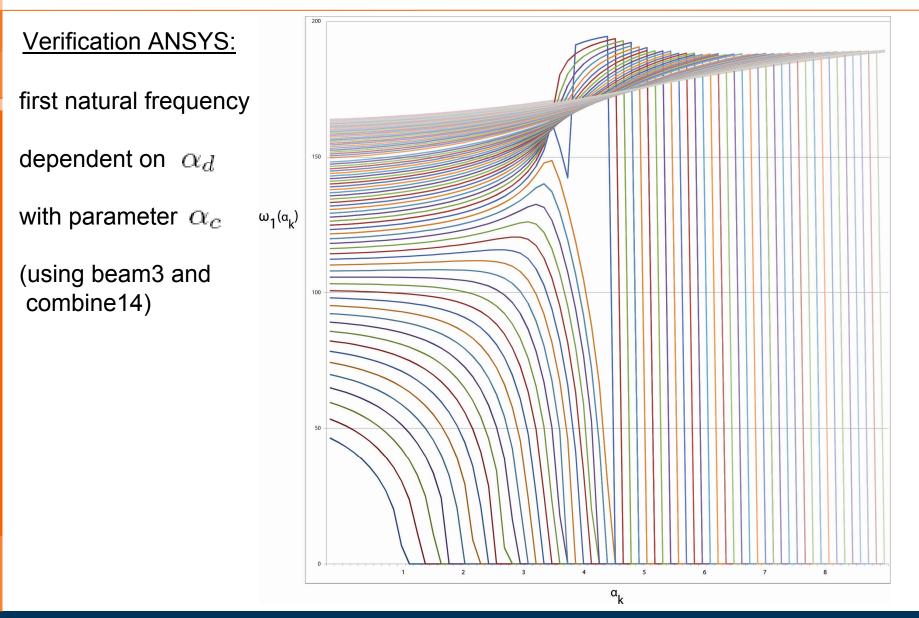
Introduction of dimensionless parameters:

$$\begin{split} \alpha_c &:= \frac{c}{\frac{EI_z}{L^3}} \\ \alpha_d &:= \frac{L \, d}{\sqrt{\rho \, A \, E \, I_z}}, \end{split}$$

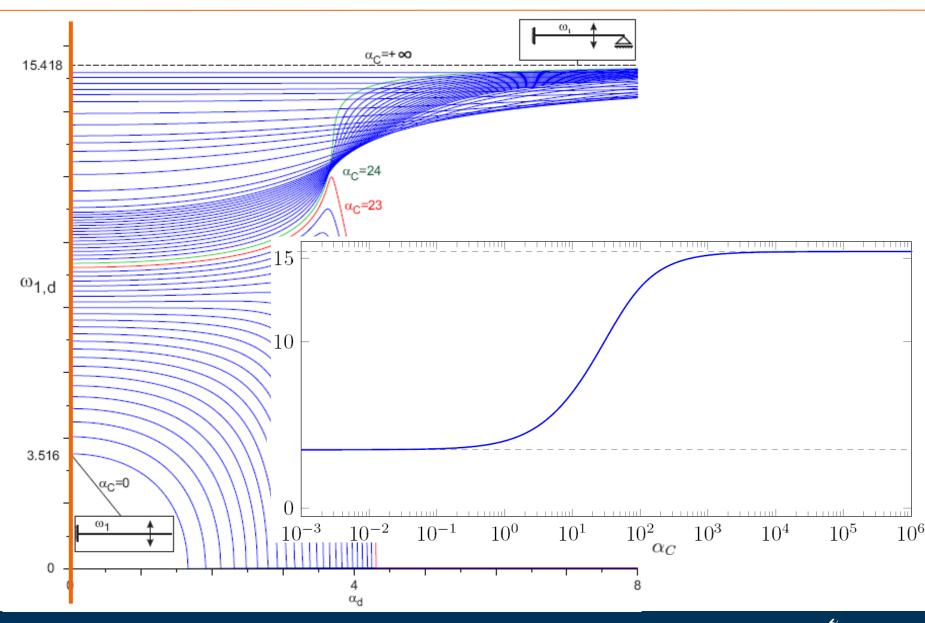
"Modeling and Control of Uncertain Systems using with Adaptive Features"



13/11/2016 Slide 77

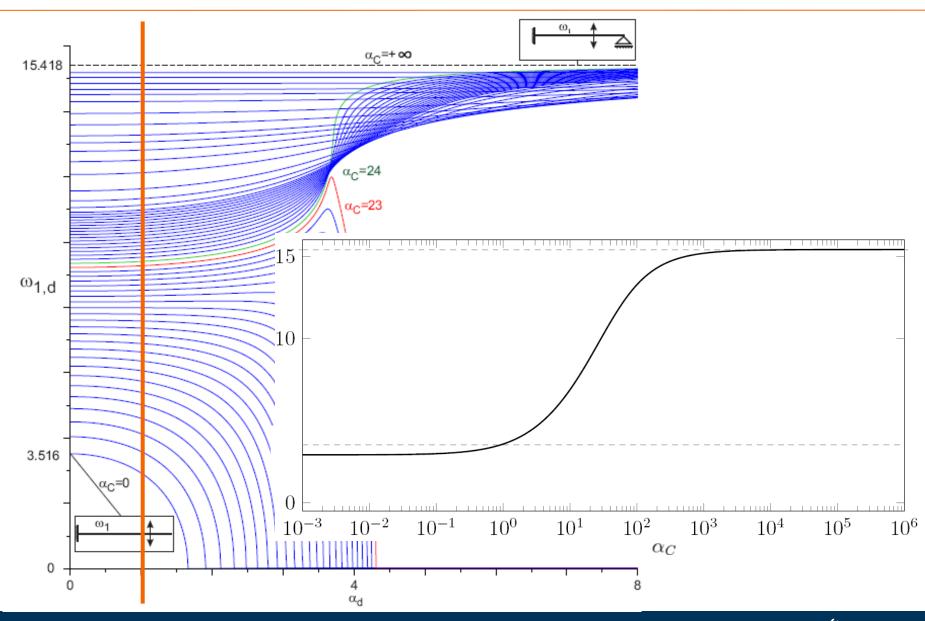


13/11/2016 Slide 78

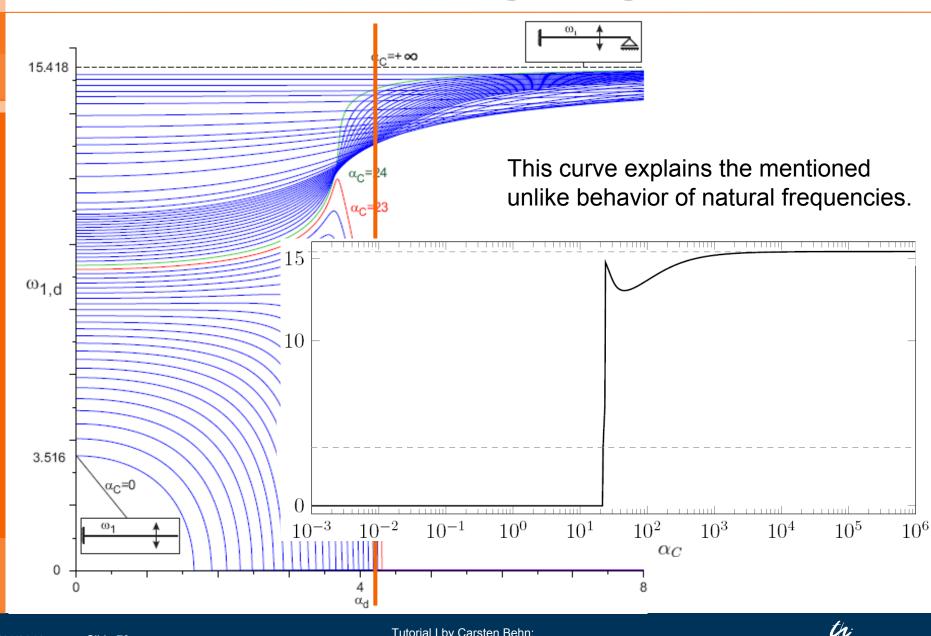


13/11/2016 Slide 79

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features" technische Universität Ilmenau



13/11/2016 Slide 79



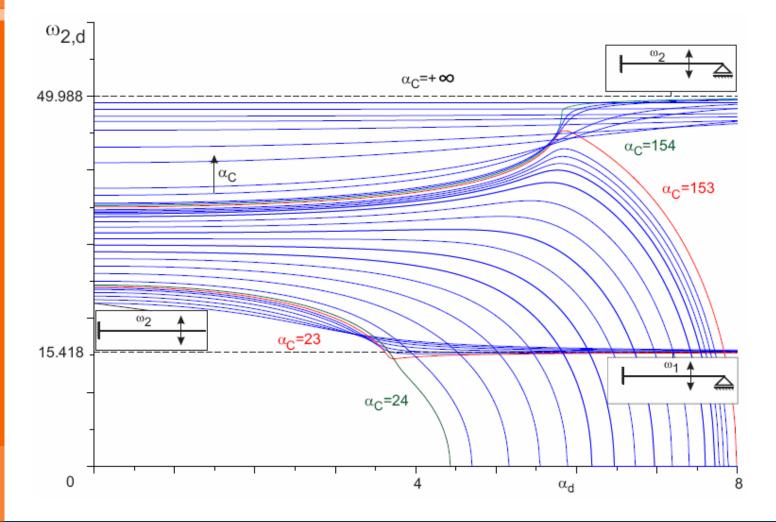
13/11/2016 Slide 79

Tutorial I by Carsten Behn: "Modeling and Control of Uncertain Systems using with Adaptive Features"

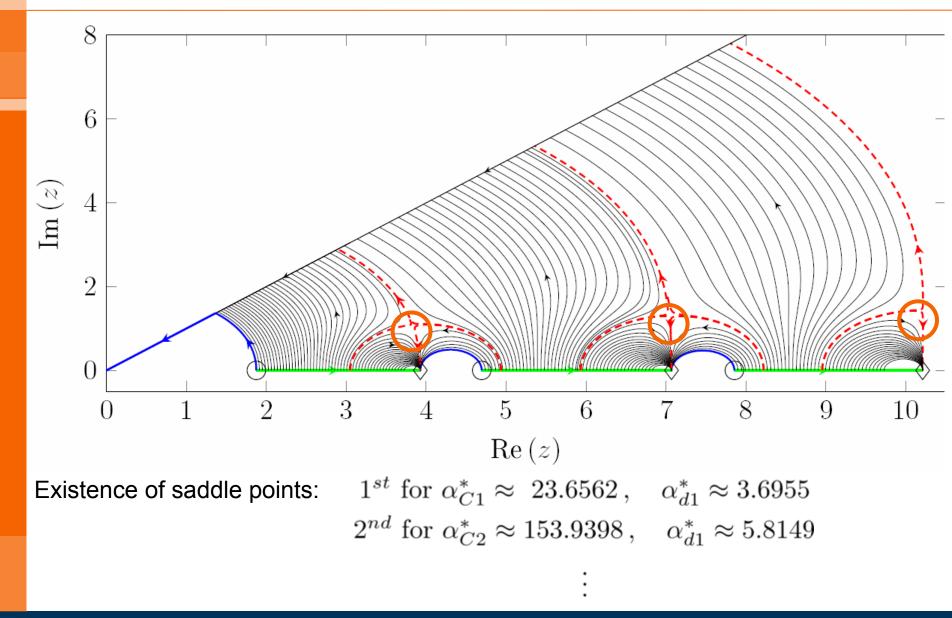
TECHNISCHE UNIVERSITÄT

ILMENAU

More complex and unlike behavior in observing the second (or other higher) natural frequencies:



Part II: Vibrissae – 5. Modeling – Stage 5a - EF



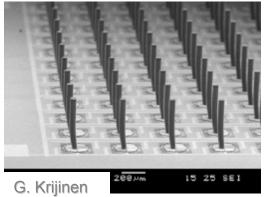
Conclusion from this stage:

- analytical treatment of beam vibrations to determine the spectrum of natural frequencies
- complex models due to complex structure of biological sensor
- unlike behavior in first models
- analysis of a special example:
 - boundary discrete damping and spring elements
 - classical assertions not valid: increase c then natural frequency will increase
 - this may explain the unlike behavior
 - 0-eigenfrequency rigid-body motion, like strong damping, no oscillation
- still known, but not for beams
- idea: observe shift in spectrum of frequencies due to sudden obstacle contacts detect distance, not only contact / no contact

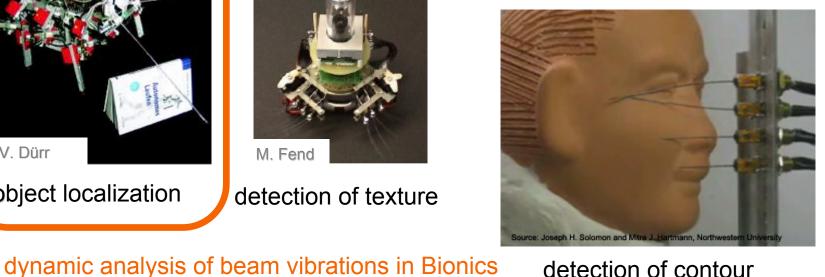
paradigms of tactile sensors for perception in applications:

- quality assurance (e.g., coordinate measuring machines)
- measurements of flow rates
- detection of packaged goods on conveyor belts

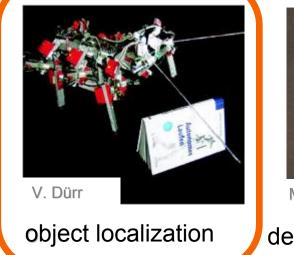
Microsystem Technology



detection of flow rates



detection of contour



Robotics

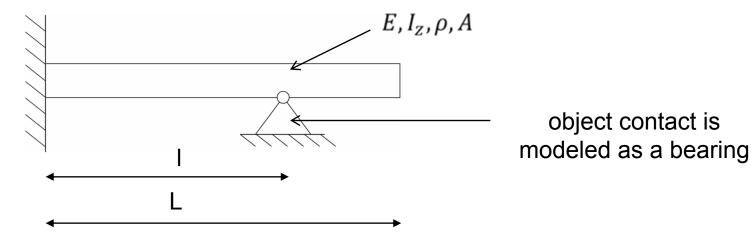
detection of texture

13/11/2016

Slide 83

[Ueno et al. 1998]

model of the vibrissa



equation of motion:
$$\ddot{v}(x,t) + k^4 v'''(x,t) = 0$$
, with $k^4 := \frac{E I_z}{\rho A}$

boundary and transition conditions:

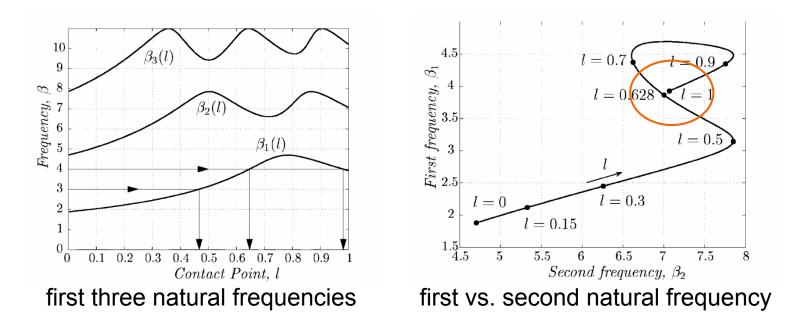
 $v_1(0,t) = 0$ • $v'_1(l,t) = v'_2(l,t)$ $v''_1(0,t) = 0$ • $v''_1(l,t) = v''_2(l,t)$

$$v_1''(0,t) = 0$$
 • $v_1''(l,t) = v_2''(l,t) = 0$
 $v_1(l,t) = 0$ • $v_2''(L,t) = 0$

•
$$v_1(l,t) = 0$$

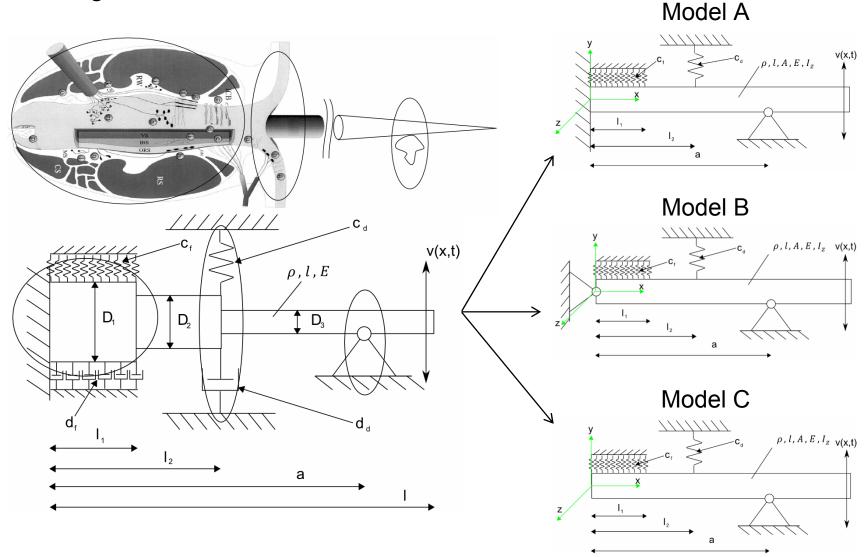
$$v_1(l,t) = 0$$
 • $v_2'''(L,t) = 0$

[Ueno et al. 1998]

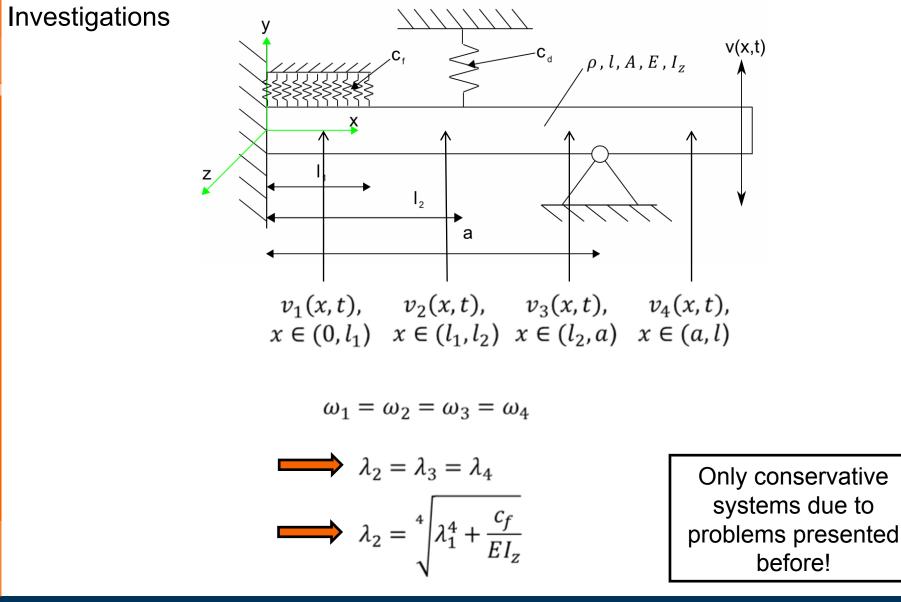


- determination of the contact point with the first natural frequency is not possible
- determination of the contact point with the first two natural frequencies is quite hard

Modeling



13/11/2016 Slide 86



Conclusion from this stage:

- focus on dynamical analysis of vibrissa-like beams for obstacle distance detection
- development of several vibrissa-like beams which supports match better the real biological conditions
- idea: investigations of each eigenvalue spectrum
- development:
 - possibility to expand the eigenvalues curve with the discrete spring
 - determination of the contact point by means of two algorithms
- very first experiments show the effectiveness of the algorithms

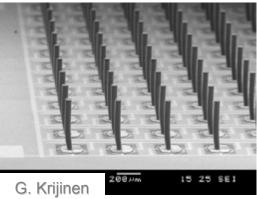
To be done:

- investigation of models with different cross-sections, pre-curvature, non-conservative
- improve experiments

Paradigms of tactile sensors for perception in applications:

- quality assurance (e.g., coordinate measuring machines)
- measurements of flow rates
- detection of packaged goods on conveyor belts

Robotics



detection of flow rates

detection of contour

V. Dürr

object localization

M. Fend

detection of texture

large deflection of beams in Bionics

13/11/2016 Slide 89

State of art

 most works focus on numerics from the beginning [Scholz, Rahn 2004] $\frac{dx}{ds} = \cos(\theta) \quad \frac{dy}{ds} = \sin(\theta) \quad E I_z \frac{d\theta}{ds} = M_s$ $s = L_{\rm E}$ M_0 0.2 Object F_x 0.15 0.1 0.05 $M_{s} = \begin{cases} M_{0} - F_{y} x + F_{x} y, & s \leq L_{F}, \\ 0, & s > L_{F}, \end{cases}$ Ξ 0 -0.05 -0.1 -0.15 -0.2 -0.05 0.05 0.45 0.150.25 0.35 [m]

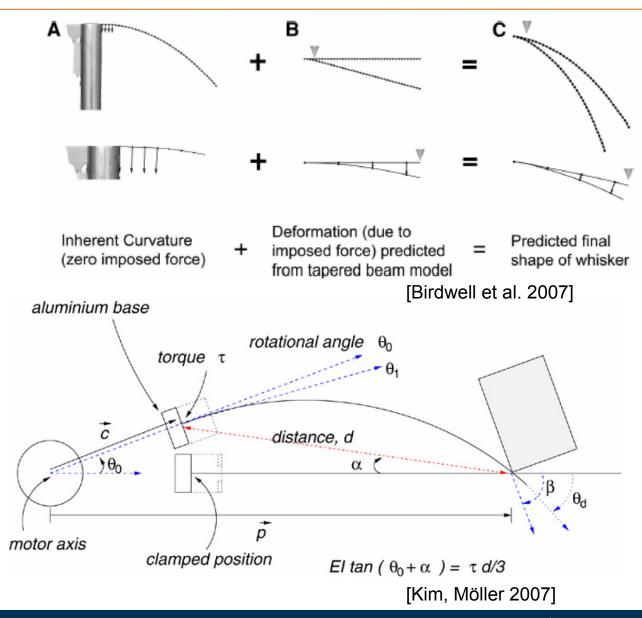
object fits in the field of computed vibrissae

13/11/2016

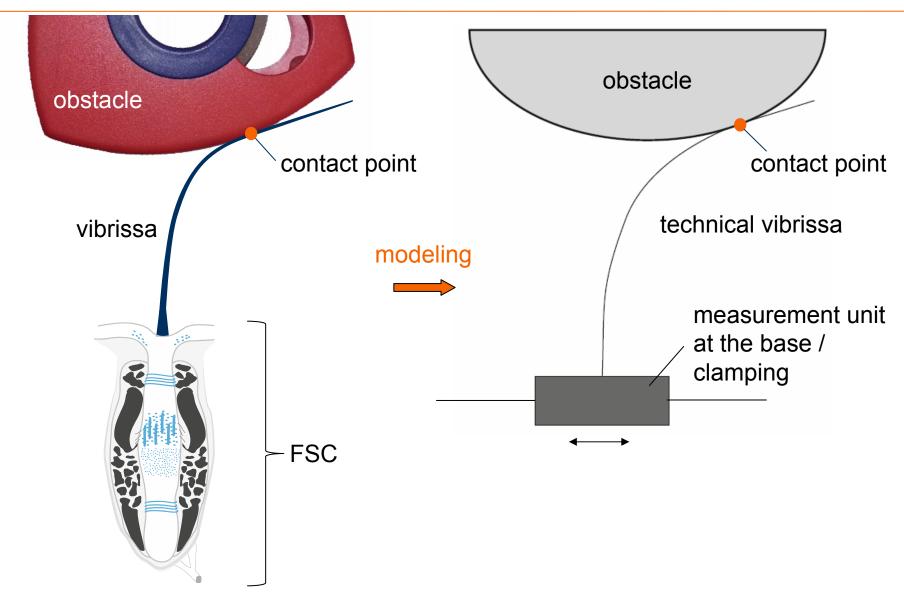
Slide 90

State of art

- BVP-solvers are used [Hires et al. 2013]
- linear theory is used [Birdwell et al. 2007]
- rigid body systems are used as an approximation [Quist, Hartmann 2012]
- also finite differences [Pammer et al. 2013] and others are used [Kim, Möller 2007]
- no analytical treatment, skipping beam theories at early stages



ILMENAU



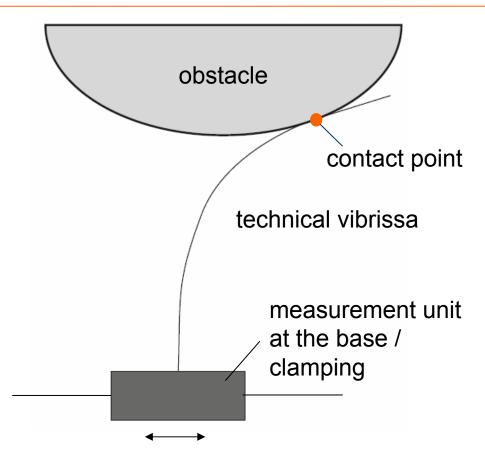
Assumptions on Contour:

smooth, strictly convex
ideal contact, i.e., contact force perpendicular to profile contour
no friction taken into account

Assumptions on Vibrissa:

straight beam (no pre-curvature)
constant 2nd moment of area
constant Young's modulus *E*Hooke's law of linear elasticity
ignoring shear stress
Euler-Bernoulli theory for large deflections

•support at base: clamping



Conclusions from this stage:

-analytical treatment of large deflections of beams

-generation of observables possible for strictly convex surfaces

-sweep has to be divided into two phases

-new insights:

- decision criterion for actual phase, decreases computations
- contact point computation
- no approximation of the problem
- profile contour reconstruction possible with one sweep

-reconstruction with previously computed observables: error within 10⁻⁶

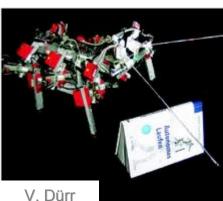
To be done:

- verification by an experiment
- include pre-curvature, conicity of the beam

Presentation on Monday Session: Intelli 1

Paradigms of tactile sensors for perception in applications:

- quality assurance (e.g., coordinate measuring machines)
- measurements of flow rates
- detection of packaged goods on conveyor belts

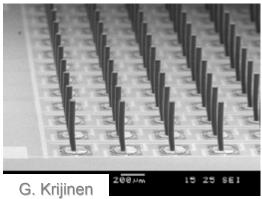


object localization

Robotics

detection of texture

Microsystem Technology



detection of flow rates

detection of contour

Slide 95 13/11/2016

Overall conclusions

13/11/2016 Slide 96

