
ADAPTIVE TASK SCHEDULING USING 
LOW-LEVEL RUNTIME APIs AND MACHINE 

LEARNING 

November, 2017, Barcelona, Spain 
 

  Prepared by: Ahmad Qawasmeh 
  Assistant Professor 
  The Hashemite University, Jordan 

Keynote, ADVCOMP 2017 



Outline 

2 

2. Related Work 

1. Motivation and Background 

4. Analysis and Evaluation 

3
. 

APARF Framework Implementation (OpenUH) 

5. Summary and  Future work 

 OpenMP tasking profiling APIs 
 OpenMP profiling tool and performance analysis 
 A hybrid machine learning model for adaptive prediction 



Motivation and Goal 

3 

• Predicting the optimum task scheduling scheme for a 
given OpenMP program by developing Adaptive and 
portable framework 



Main Contributions 

4 

A I proposed a new open-source API for OpenMP task profiling in 
OpenUH RTL 

B                                                  I developed a reliable OpenMP profiling tool for capturing    
useful low-level runtime performance measurements. 
 

D I built and evaluated a portable framework (APARF) for predicting the 
optimal task scheduling scheme that should be applied to new, unseen 
applications. 

C I exploited my performance framework to perform a 
comprehensive scheduling analysis study 



Background 

5 



Shared Memory: Logical View 

proc1 proc2 proc3 procN 

Shared memory space 

SMP Vs cc-NUMA 



OpenMP API 
 A standard API to write parallel shared memory applications in C, C++, 

and Fortran 
 Consists of compiler directives, runtime routines, environment variables 

7 

Parallel Regions 

Master thread 

A Nested 
Parallel 
region 

Worker thread 

Barrier 

http://www.openmp.org 



OpenMP Tasks 

8 

 A task is an asynchronous work unit  
  C/C++: #pragma omp task 
  Fortran: !$omp task 

 Contains a task region and its data environment 

 
 

int fib(int n) { 
    int x, y; 
    if (n < 2)  return n; 
    else { 
          #pragma omp task shared(x) 
          x = fib(n-1); 
          #pragma omp task shared(y) 
          y = fib(n-2); 
          #pragma omp taskwait 
          return x + y;    
    } 
} 



OpenMP Task Scheduling 

9 



Performance Observation 

10 

Profiling vs. Tracing 



OpenMP performance APIs before OMPT 

11 

 POMP (Profiler for OpenMP) 
 Instrumentation calls inserted by a source-source tool (TAU, KOJAK, 

Scalasca) 
 Can notably affect compiler optimizations  

 ORA (Collector API) 
 Sampling of call stack 
 Originally has 11 mutually exclusive states, 9 requests, and 22 defined 

callback event  
 Was accepted as a white paper by ARB 
 Introduced before tasks and implemented in OpenUH RTL 

 OMPT (OpenMP Tool Interface) 
 
 

 



Related Work 

12 



Related Work (Adaptive Scheduling) 

13 

 An OpenMP scheduler was proposed to adapt the granularity 
of work within loops depending on data placement info. 

 
 Some previous works have focused on disabling threads in 

parallel loops in the presence of contention. 
 
 A thread scheduling policy embedded in a GOMP-based 

framework was proposed for OpenMP programs featuring 
irregular parallelism.   

 
 Another area of research aims to reduce scheduling overhead 

by increasing task granularity by chunking a parallel loop or 
by using a cut-off technique 

 
 

 



Characterization using Machine Learning 

14 

 
 

Machine learning was used to characterize programs in 
representative groups   



Automatic Portable and 
Adaptive Runtime 
Feedback-Driven 

(APARF) Framework 

15 



Task Execution Model in OpenUH 

16 

READY 

RUNNING 

task created 

num_children == 0 ? WAITING 

num_blocking_children 
== 0 ? 

EXITING 

task  
destroyed 

__ompc_add _task_to_pool: 
adds task into the task pool 

__ompc_task_switch: 
execute task removed  
from pool 

__ompc_task_wait 

Y N 

N 

Y 

__ompc_task_exit: 
decrement parent’s 
num_children 

num_children == 0 ? 

Y 

N 

(other_task) __ompc_task_exit 

__ompc_task_create: 
adds child tasks to the  
task pool 

(other task) __ompc_task_exit 

__ompc_remove_task_from_pool 
removes a task from the pool, and switches 
to it 

__ompc_remove_task_from_pool 
removes a task from the pool, and switches 
to it 

tied? 
Y 

N 

Placed on tail of the 
thread’s untied queue  

http://web.cs.uh.edu/~openuh/ 

http://web.cs.uh.edu/%7Eopenuh/


17 

OMPT and ORA Tasking Implementation  
in OpenUH RTL 

 proposed a tasking profiling interface in the OpenUH RTL as 
an extension to the ORA before OMPT 
 Task creation 
 Task execution 
 Task completion 
 Task switching 
 Task suspension 
 

 OMPT is a super-set of ORA 
 Support sampling of call stack with optional trace event generation.  
 State support, task creation and completion are mandatory, while the 

others are optional 
 
 Adapting my tasking APIs to be compatible with OMPT was 

straightforward 
 
 

 



 
Overhead Analysis in OpenUH RTL 

 

18 



Adaptive Scheduling Through APARF  

19 

UH 

OpenMP Program 

Scheduling scheme 

Compute/memory bound 
Granularity (fine-coarse grain) 
#tasks directives 
Nested tasks and structure 

Queue Organization: Global, 
Distributed, Hybrid, Hierarchical 
Task placement and removal: LIFO, 
FIFO, Deque, INV-Deque 
Chunk size, NUM-SLOTS, STORAGE 

Profiling Tool 

OMPT Tasking API in OpenUH RTL 

Hybrid Machine Learning Model 
Data-Preprocessing 

Clustering 
Classification 

Class 1 Class 2 Class 3 

Adaptive 
Feedback 

APARF 
FRAMEWORK 

Performance 
system 



Interaction Example in APARF 

20 

 Ahmad Qawasmeh, Abid Malik, Barbara Chapman, Kevin Huck, Allen Malony, 
"Open Source Task Profiling by Extending the OpenMP Runtime API", 
IWOMP2013, pp. 186-199, September 2013, Canberra, Australia. 
 



APARF OpenMP Profiling Tool 

21 

Implements a single handler to handle all events. 
Initializes the API to establish a connection with the runtime. 
Captures useful low-level runtime performance measurements. 
Timing, HWCs, and Energy/power sensors were integrated. 

int fib(int n) { 
    int x, y; 
    if (n < 2)  return n; 
    else { 
          #pragma omp task shared(x) 
          x = fib(n-1); 
          #pragma omp task shared(y) 
          y = fib(n-2); 
          #pragma omp taskwait 
          return x + y;    
    } 
} 



OpenMP Task Scheduling Analysis 

22 

A An OpenMP task scheduler can be distinguished based on: 

C                                                  Conflicting Goals: 

B Two crucial issues should be managed by a task scheduler: 

 Queue organization 
 Work-stealing capability. 
 Order in which a task graph is traversed 

 Data locality 
 Load balancing 

 Queue contention, work stealing, synchronization overheads 
 Task granularity (coarse vs. fine) 
 



Analysis Setup in OpenUH  

23 

A We performed a detailed analysis study 

 200 scheduling schemes were applied to eight BOTS benchmarks 
 Three different sets of threads were used with two input sizes 
 Initial observation: categorized into three representative groups 



Analysis Setup 

24 

D We have used our performance framework 

 The captured runtime events are: task suspension, task 
execution, task completion, task creation, explicit/implicit barrier, 
parallel-region, and single/master/loop region 

 
 Exploiting data locality can best be expressed by demonstrating 

the cache behavior (cache misses, CPI, TLB) 
 
 Maintaining load balancing was evaluated by obtaining the 

timing distribution among threads for each captured event. 
   

 

A. Qawasmeh, A. Malik, B. Chapman. “OpenMP Task Scheduling Analysis via 
OpenMP Runtime API and Tool Visualization”, In 2014 IEEE 28th IPDPSW. pp. 
1049 - 1058, May, 2014, Phoenix, Arizona, USA. 



Similarity Among Benchmarks 



Similarity Among Benchmarks 

26 



Hybrid Machine Learning Modeling 

27 

 Why machine learning? 
 
 
 

 Meaning of hybrid in our context? 
 

 
 Major challenges? 

 
 
 

 Java tool based on the weka API 

Measurements obtained from the runtime by external tool regardless of the 
used runtime or compiler  
384 data instances with 14 selected features (Overwhelming for human 
processing) 

Unsupervised learning (K-Means clustering) 
Supervised learning 

Complex search space 
Limited # task-based programs for training 
Features selection 



Classification Process for Prediction 

28 

Rank Attribute 
1.519 c_suspend 
1.18 c_execution 
1.169 c_parallel 
0.987 t_finish 
0.919 t_creation 
0.895 t_suspend 
0.841 c_single 
0.83 c_creation 
0.793 t_execution 
0.678 c_finish 
0.66 c_barrier 
0.5 t_parallel 
0.489 t_barrier 
0.488 t_single 



Training Data Improvement 

29 

Improvement 
(AMD) 

Improvement 
(Intel) 

Fib 26% 35% 
Health 30% 38% 
Sort 21% 19% 
FFT 10% 13% 
Nqueens 9% 18% 
Strassen 8% 8% 

Alignment 3% 3% 
Sparse 4% 5% 



Training Data Behavior 

30 

Normalized 
data 

Runtime Event 



Portable Prediction Behavior 

MD Application UTS Benchmark 

Program Predicted Class 
UTS 24 public(1) 
Floorplan 16 simple(0),8 default(2) 
EPCC 24 public(1) 
Whetstone 24 simple(0) 
MD 24 simple(0) 

93% prediction accuracy 

31 



Performance Improvement for 
new/unseen Applications 

AMD Opteron Intel Xeon 

32 

A. Qawasmeh, A. Malik, B. Chapman. “Adaptive OpenMP Task Scheduling Using 
Runtime APIs and Machine Learning”, In 2015 IEEE 14th ICMLA conference. Dec, 
2015, Miami, Florida, USA. (Accepted with 25% acceptance rate) 



Summary/Future Work 

33 



Summary and Future Work 

34 

A I proposed a new open-source API for OpenMP task 
profiling in OpenUH 

B                                                    I developed a reliable OpenMP profiling tool for capturing 
useful low-level runtime performance measurements. 

D I built and evaluated a portable framework (APARF) for predicting the 
optimal task scheduling scheme that should be applied to new, unseen 
applications. 

C I used my performance framework to perform a 
comprehensive scheduling analysis study 

>>> Predict energy consumption behavior at the fine-grain level 



35 



Acknowledgement 

36 

 
 HPCTools Group at the University of Houston, Texas, USA 
 




	ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING
	Outline
	Motivation and Goal
	Main Contributions
	Slide Number 5
	Shared Memory: Logical View
	OpenMP API
	OpenMP Tasks
	OpenMP Task Scheduling
	Performance Observation
	OpenMP performance APIs before OMPT
	Slide Number 12
	Related Work (Adaptive Scheduling)
	Characterization using Machine Learning
	Slide Number 15
	Task Execution Model in OpenUH
	Slide Number 17
	�Overhead Analysis in OpenUH RTL�
	Adaptive Scheduling Through APARF 
	Interaction Example in APARF
	APARF OpenMP Profiling Tool
	OpenMP Task Scheduling Analysis
	Analysis Setup in OpenUH 
	Analysis Setup
	Similarity Among Benchmarks
	Similarity Among Benchmarks
	Hybrid Machine Learning Modeling
	Classification Process for Prediction
	Training Data Improvement
	Training Data Behavior
	Portable Prediction Behavior
	Performance Improvement for new/unseen Applications
	Slide Number 33
	Summary and Future Work
	Slide Number 35
	Acknowledgement
	Slide Number 37

