Tutorial: Chaotic System Control for Brain Stimulation & FPGA Hardware Implementation

Eur Ing Dr. Lei Zhang Faculty of Engineering and Applied Science University of Regina Canada

The Second International Conference on Neuroscience and Cognitive Brain Information BRAININFO 2017, July 22, 2017, Nice, France

Outlines

Chaotic Systems

Hénon Map Analysis and Control

Artificial Neural Network Design for Hénon Map

Artificial Neural Network Design for Lorenz System

Fixed-point Implementation

Model and VHDL-based FPGA Design

One Idea and Three Methods

- One Idea:
 - Chaotic system simulation, analysis and control for pattern recognition of brain activities and brain stimulation.
- Three Methods:
 - Chaotic systems analysis and control
 - Artificial Neural Network (ANN) architecture design and optimization
 - FPGA fixed-point hardware implementation

The Idea:

Brain

Stimulation

Chaotic Systems

Machine Learning

Brain Research Program Overview

- Parkinson's Disease tremor
- Epilepsy seizure
- Dynamic Analysis and Control
- Artificial Neural Network based Model
- Feature Extraction of EEG Signals
- Pattern Recognition and Classification

The Practical Goal: Brain Stimulation

- Electroencephalogram (EEG) uses electrodes attached to the scalp to capture brainwave signals;
- EEG signals captured from brain activities demonstrate chaotic behaviors (bifurcation etc.)
- Brain Stimulation
 - Deep brain stimulation
 - Non-invasive brain stimulation
 - Eg. Direct current (tDCS), Electromagnetic, ultrasound

The Challenges and Remedies

Challenges

- EEG signals are individual dependent and the amount of available data is limited;
- EEG signals are affected by noise
- ANN training require big data
- Remedies
 - The outputs of chaotic systems are used to train ANN to simulate brain activities
 - FPGA hardware implementation for parallel processing and acceleration

Chaotic Systems

- A chaotic system is a bound system which obtains the existence of attractor.
- Outputs depends on initial values and system parameters;
- Predictability, probability and controllability;
- Examples:
 - 1D Logistic map, Gaussian map
 - 2D Hénon map
 - 3D Lorenz system, Röseller system

Hénon Map - Definition

Equations by definition:

Hénon Map Analysis

Jacobian Matrix:

$$J(x_1, y_1) = \begin{pmatrix} \frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} \\ \frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} \end{pmatrix} \Big|_{(x_1, y_1)}$$

Hénon I:

Hénon II:

$$J = \begin{pmatrix} -2\alpha x & 1\\ \beta & 0 \end{pmatrix} = \begin{pmatrix} -2.4x & 1\\ 0.4 & 0 \end{pmatrix}$$
$$J = \begin{pmatrix} -2x & \beta\\ 1 & 0 \end{pmatrix}$$
$$Eig(J)_{(x_1 = -1.1965)} = \begin{cases} \lambda_1 \approx 3.0047\\ \lambda_2 \approx -0.1331 \end{cases}$$
$$Eig(J)_{(x_2 = 0.6965)} = \begin{cases} \lambda_1 \approx 0.2123\\ \lambda_2 \approx -1.8839 \end{cases}$$
$$Eig(J)_{(x_2 = -1.4358)} = \begin{cases} \lambda_1 \approx 3.0047\\ \lambda_2 \approx -0.1331 \end{cases}$$

Critical points of period N orbit is stable as long as:

$$|\lambda_1| < 1$$
 and $|\lambda_2| < 1$

Hénon Map - Bifurcation

(a) & (c) The bifurcation points (h1 =0) are found at : α = 0.27 (period one doubling) α = 0.85 (period two doubling) α = 0.99 (period four doubling)

(b) & (d) The bifurcation points (h1 =1) are found at : β = 0.265 (period one doubling) β = 0.035 (period two doubling) β = 0.125 (period four doubling)

Hénon Map Bifurcation 3D

Hénon Map Lyapunov Exponents

$$L(x_0) = log\left(Eig\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \left(J_i(x_0) \cdot J_i^T(x_0) \right)^{\frac{1}{2}} \right)$$

Hénon Map Bifurcation Animation

ANN Model Design for Chaotic Systems

- An feed forward ANN can be trained using the output values of a chaotic system.
- The training process is carried out on a computer and the weights and bias are generated for all neurons in an ANN architecture.
- The complexity of the ANN architecture defines the implementation cost and speed. Therefore it is beneficial to use less number of hidden neurons to achieve the target training performance.

A Simple Neuron Model

- Inputs
- Weights
- Biases
- Summed Weights
- Activation Function
- Outputs

Artificial Neural Network

$$a_{j}^{l} = \sum_{i=1}^{N_{l-1}} w_{j,i}^{l} x_{i} + b_{j,0}^{l} \qquad j = 1, 2, \dots N_{l}$$
$$y_{j}^{l} = f_{l}(a_{j}^{l})$$

ANN Training

- 3 Training Algorithms:
 - Levenberg- Marquardt (LM)
 - Bayesian Regularization (BR)
 - Scaled Conjugate Gradient (SCG)
- 16 Architectures (1 to 16 hidden neurons) for each algorithm
- 3 Training iterations for per architecture per algorithm

ANN Training Performance

- The ANN training result is measured by the error between the calculated output y and the target training output ŷ.
- The performance of the ANN training process is evaluated by how fast and well the error converge to the target threshold.
- The most common method for measuring the output error is Mean Squared Error – MSE

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Hénon Map Training Results - LM

19

Hénon Map Training Results - BR

Hénon Map Training Results-SCG

ANN Training Performance SCG 1.E+00 1.E-01 1.E-02 MBE 1.E-03 1.E-04 1.E-05 10 11 12 13 14 15 16 1 2 3 No. of Hidden Neurons of ANN

Hénon Map Training Results

ANN Training Performance-Average 1.E+00 -LM 1.E-01 -BR 1.E-02 SCG 1.E-03 1.E-04 1.E-05 ¥ 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1 9 10 11 12 13 14 15 16 2 3 8 4 5 7 No. of Hidden Neurons of ANN

Hénon Map ANN Architecture

Figure 1. ANN Architecture for Hénon Map Chaotic System

Figure 3. Simulink Model for ANN-based Hénon Map Chaotic System

Hénon Map Training Performance 2-hidden neurons LM

Hénon Map Training Performance 2-hidden neurons BR

Hénon Map Training Performance 2-hidden neurons SCG

Lorenz Chaotic System

$$\begin{aligned} \frac{dx}{dt} &= \sigma(y - x) \\ \frac{dy}{dt} &= \rho x - y - xz \\ \frac{dz}{dt} &= -\beta z + xy \end{aligned}$$

The Lorenz Butterfly (10,20,30)

Lorenz System ANN Model

Training Performance – LM – 8 hidden neurons

Training Performance – BR – 8 hidden neurons

Training Performance – SCG – 8 hidden neurons

33

Best Training Performance- LM

34

Best Training Performance- BR

Best Training Performance - SCG

Averaged Training Results

Fixed-point Representation

The range of the singed fixed-point is represented by

$$-(2^{N_i} - 2^{-N_f} + 1) \sim +(2^{N_i} - 2^{-N_f})$$

 where Ni be the number of integer bits, Nf be the number of fractional bits. The precision (step size) is 2^(-Nf).

Hénon Map Fixed-point

Hénon Map Fixed-point Analysis

(a) Lyaponove Exponent - Floating Point (b) Lyaponove Exponent - Fixed-point 8b (c) Lyaponove Exponent - Fixed-point 6b

Hénon Map Chaotic Control: Periodic Proportional Pulses

Periodic Proportional Pulses

Model-based Hénon Map Design

VHDL Vs Model-Based Designs

Zynq 7020	VHDL Based Design I			VHDL Based Design II			Model Based Design ^a	
Data format	F32_29	F16_13	F16_13	F32_29	F16_13	F16_13	F32_18	F16_13
Sample period T _s	20 ns	20 ns	10 ns	20 ns	20 ns	10 ns	50 ns	20 ns
Worst Negative Slack	0.03 ns	7.593 ns	-2.034 ns	7.45 ns	11.857 ns	2.452 ns	24.37 ns	1.32 ns
Max Frequency(MHz)	50.08	80.60	-	79.68	122.80	132.49	39.01	53.53
No. of 4 input LUTs	172	16	16	123	16	16	366	150
No. of Registers	64	16	16	64	32	32	64	32
No. of Slices	44	4	5	40	10	10	126	56
No. of DSP	12	3	3	8	2	2	4	1
Total On-chip Power(W)	0.16	0.138	0.156	0.158	0.138	0.155	0.153	0.154

$$f_{max} = \frac{1}{T_s - WNS}$$

Design I : 3 multipliers; Design II: 2 multipliers; FPGA DSP: 18x18

Summary

•

One Idea

Three Methods

- Chaotic systems analysis and control
 Artificial Noural Notwork (ANN) archit
- Artificial Neural Network (ANN) architecture design and optimization

Brain stimulation based on Chaotic systems

simulation and Artificial Neural Network Design

• FPGA fixed-point hardware implementation

Q and A

Thank you!