International Academy, Research, and Industry Association (IARIA) Tutorial

Advanced Cyber Topics

Tutorial Session I

Instructors: Dr. Thomas J. Klemas and Dr. Steve Chan 18 November 2018

Decision Engineering Analysis Laboratory

San Diego Cambridge

-acilitating Decision-Making Via Deep Insights

Tutorial Syllabus

Section 1: Cyber Assessment, Cyber Frameworks, Machine Learning (25 min)

- Cyber Ranges
- Cyber Assessment
- Cyber Frameworks
- Machine-Aided Applications

Section 2: Cyber Robustness, Adaptation, Countermeasures and Analytics (25 min)

Video #1: Whitebox Orientation for Software Cyber Robustness (15 min) Lessons Learned from Cyber Efforts amidst Ever-Increasing Cycles of Adaptation Anti-Systems (Countermeasures) Predictive Analytics

Section 3: Artificial Intelligence, Creativity, Mutation, Traffic Analysis, Information Sharing (25 min)

- Video #2: Hybridizing Artificial Intelligence Systems with Human Intuition as well as Open Source and Non-Open Source Components (15 min) Lessons Learned for Maximal Cyber Creativity to mitigate High Adversarial Mutation Rates.
- Traffic Analysis (Baselining, Pattern and Anomaly Detection) Information Sharing (Target of Choice or Target of Chance)
- Section 4: Ideation for Future Cyber Innovation (5 min) Audience participation with Instructor moderation Cyber Survey (Time Allowing)

Decision Engineering Analysis Laboratory

San Diego Cambridge

Tutorial Instructor Background

• Dr. Thomas Klemas

- Alumnus of MIT
- Numerous publications in Computational Electromagnetics, Radar, Open System Architecture, Data Analytics, Cyber Technology, Sustainability and Resilience
- Directed MIT Advanced Computational Modeling & Simulation Program and MIT Computational Modeling Collaboration
- Variety of senior advisory and leadership positions
- Co-Founder and VP of Analytics2Insight
- IARIA Fellow, Steering Committees (Cyber and Data Analytics), Keynote Speaker, Panelist, Session Chair, Instructor
- Director, Decision Engineering Analysis Laboratory

• Dr. Steve Chan

- Alumnus of MIT and Harvard University.
- Numerous publications on Prototype Frameworks, Decision Engineering, Data Analytics, Cyber Electromagnetic Technology, Sustainability and Resiliency
- Co-Founded various centers and served as Chief Architect and/or CTO; Advisor for the MIT Advanced Computational Modeling & Simulation Program, MIT Computational Modeling Collaboration
- Former Strategic Development Advisor to several Fortune 500 firms and Scientific Advisor for various Silicon Valley companies
- Variety of Special Advisor and Chief Architect functional roles for government
- IARIA Fellow, Steering Committees (Cyber and Data Analytics), Keynote Speaker, Panelist, Session Chair, Instructor
- Director, Decision Engineering Analysis Laboratory

Decision Engineering Analysis Laboratory

San Diego Cambridge

Facilitating Decision-Making Via Deep Insights

Section 1: Cyber Assessment, Cyber Frameworks, Machine Learning

- Cyber Ranges
 - Cyber Assessment
 - Cyber Frameworks
 - Machine-Aided Applications

Cyber Ranges

- Computational resources: Data center or cloud
- Hypervisor
- Construct virtual machines
 - Emulate arbitrary hardware and operating systems
 - Computers: clients, servers, tools
 - Devices: routers, switches
 - Firewalls, proxies
- Network
- Services

Decision Engineering Analysis Laboratory

San Diego Cambridge

Via Deep Insights

Decision-Making

-acilitating

Cyber Range Example

- Illustrate Range Model Diagram
- Subnet description
- Cybersecurity tools subnet
- Services
- Networking devices

Engine

Web Interface to Cyber Range Model

- Web-based access console
- Login
 - Username
 - Password
- Access virtual range via interface

San Diego Cambridge

Web Interface Details

- Event planner determines visibility of virtual machines that comprise a particular range model
- Virtual machines (VM) visible in web-interface emulate physical access
 - You can "sit down at the console" and log in if the VM is visible
 - You can still access other VM's using tools (example: ssh)
- Click on VM icon to access that VM
- Additional information can be provided
 - Event instructions
 - Network diagram

Decision Engineering Analysis Laboratory

San Diego Cambridge

Web Interface: Accessing a particular VM

- Log into console
- Linux: Opens window with terminal or desktop view
- Windows: Opens window with desktop icon view
- Type commands or click icons (depending) to access VM capabilities

Decision Engineering Analysis Laboratory

San Diego Cambridge

Web Interface: Accessing cyber tools

- Log into console
- Open browser
- Access tool console using browser
- Type queries to harness tool
 - Queries for investigation searches
 - Plots, Charts, etc for visualization of results
 - Examples
 - Centralized, aggregated data: Kibana, SGUIL
 - Direct access grep of proxy log

Decision Engineering Analysis Laboratory

San Diego Cambridge

Web Interface: Management of Events

- Invite users to events
- Assigning visibility permissions to users

San Diego Cambridge

Section 1: Cyber Assessment, Cyber Frameworks, Machine Learning

- Cyber Ranges
- Cyber Assessment
- Cyber Frameworks
- Machine-Aided Applications

San Diego Cambridge

Introduction to Assessment

Protection

- Important but limited (e.g. insider threat)
- Importance of assessment

Adversary is already on your network

- Monitoring and detection
- Hunt and pursuit
- Investigation
- Respond
- Recovery
- Individual: knowledge, skills, abilities, and persistence
- Team: Leadership, organization, communication, teamwork, dutifulness

Decision Engineering Analysis Laboratory

San Diego Cambridge

Beneficial Capabilities

Evaluating Domain-specific Skills and more general Abilities of Individuals Mapping Questions to Frameworks to provide Specialty Scoring Provide Knowledge, Skills, Ability, and task sub-scores

Multiple Classification Systems

Based on Job Task Analysis Customer categorization frameworks Traditional Frameworks

Composition of Teams

Evaluate areas of strength and gap areas Build teams that are equal levels Compose special teams that are designed for maximal performance

Determine topics for training and order of importance

Decision Engineering Analysis Laboratory

San Diego Cambridge

Section 1: Cyber Assessment, Cyber Frameworks, Machine Learning

- Cyber Ranges
- Cyber Assessment
- Cyber Frameworks
 - Machine-Aided Applications

San Diego Cambridge

Cybersecurity Frameworks Introduction

- National Initiative for Cybersecurity Education (NICE)
- National Institute of Standards and Technology (NIST) Cybersecurity Framework
- Center for Internet Security (CIS) Controls
- ISO/IEC 27000 family Information security management systems
- Gunnery Tables
- Mission Essential Tasks (METs)
- And many more, each with a specific focus

Decision Engineering Analysis Laboratory

San Diego Cambridge

National Initiative for Cybersecurity Education (NICE)

- Motivate & implement robust environment for cybersecurity (CS) education, training, workforce development
- Foundational element for Risk Management Process
- Hierarchical Framework
 - High level categories
 - Job Specialties
 - Work Roles
 - Knowledge, Skills, Abilities (KSAs)
 - Tasks
- Goal: Increase skilled CS professionals

Decision Engineering Analysis Laboratory

San Diego Cambridge

National Institute of Standards and Technology (NIST) Cybersecurity Framework

- Executive Order "Improving Critical Infrastructure Cybersecurity" Feb 12, 2013
- Industry standards and best practices
- Hierarchical Framework
 - Functions
 - Categories
 - Subcategories
- Foundation for risk management process
- Key Benefits
 - Describe current cybersecurity (CS) posture
 - Describe CS target state
 - Identify and prioritize improvement opportunities
 - Assess progress toward target state
 - Communicate in common language about CS risk

Decision Engineering Analysis Laboratory

Cybersecurity Framework Benefits

- Frameworks provide common nomenclatures
- Foundation for Risk Management Process
- Key Benefits of Workforce Framework
 - Job Task Analysis
 - Hiring
 - Revectoring
 - Training
 - Identification of Leadership Potential
- Example: ANSI Certifications and Certificates
 - Certification of Personnel
 - ISO/IEC 17024: ~ 400 requirements
 - Proficiency certification, Licensing
 - Topics: Fairness, Validity, Reliability (Cut Scores, Psychometrics)
 - Certificate Program
 - ASTM E2659: ~100 requirements
 - Coursework
 - Topics: Quality of Instructors, Learning Outcomes, Auditing (Offeror Stability)

Decision Engineering Analysis Laboratory

Section 1: Cyber Assessment, Cyber Frameworks, Machine Learning

- Cyber Ranges
- Cyber Assessment
- Cyber Frameworks
- Machine-Aided Applications

San Diego Cambridge

nsights Deep Via ecision-Making -acilitating

Machine-Aided Cybersecurity Applications

- Spam filters, web-site blockers
- Malware detection and identification
- Monitoring-aid
- Anomaly detection
 - User behaviors
 - Network traffic
- Rapid interim response
- Decision support

Decision Engineering Analysis Laboratory

San Diego Cambridge

Fundamentals of Machine-Aided Decision Making

- Task automation requires that computers interact with environments
- Detect objects
- Compute statistics on object class distribution
- Determine object classes or categories
- Classify objects
- Compute statistics on object class distribution
- Expert system rules guide automated decision making
- Anomaly detection tools
 - Generate additional insights
 - Provide suggestions to operators
 - Alert human operators of required interventions

Elements of Pattern Recognition And Machine Learning

Decision Engineering Analysis Laboratory

San Diego Cambridge

Deep Insights -acilitating Decision-Making Via

Description of Details

- Potential Data Sources
 - Email
 - Files, Folders
 - Log data
 - Packet traffic data
- Potential Features
 - Source/Destination IP addresses
 - Traffic direction
 - Source/Destination ports
 - Source/Destination netmasks
 - Source/Destination protocols
 - Port, file, folder, registry blocking. Processes to include/exclude
 - Payload
- Potential Approaches
 - Signature-based methods, Linear Decision Analysis, Support Vector Machines, Bayesian Classifiers, Partitioning, Clustering, Neural Networks
 - Machine Learning: Supervised, Semi-supervised, Unsupervised

Decision Engineering Analysis Laboratory

San Diego Cambridge

Decision-Making Via Deep Insights Facilitating

Introduction to Clustering

- Specific examples and closely related concepts
 - Partitioning
 - Typology, Taxonomy
 - Unsupervised learning
 - Learning without a teacher
- Key issues
 - Limited or no availability of training data
 - Select features, proximity measure, and criteria for clustering
 - Determine number of clusters
- Potential Benefits
 - Reduction / Compression
 - Hypothesis building: inferring and testing of ideas
 - Prediction

Decision Engineering Analysis Laboratory

San Diego Cambridge

Fundamentals of Clustering 1

• K-means algorithm

- 1. Key parameter: number of clusters, K
- 2. Select feature vector and proximity metric
- 3. Compute K random cluster centers
- 4. Assign each data point or vertex to the closest of the K clusters
- 5. Recompute cluster centers based on mean of feature vectors of assigned vertices
- 6. Return to step 4 and repeat subsequent steps until convergence
- Frequently, K-means hybrids with other approaches can achieve faster, better results
 - Training points to determine number of clusters, pick centers
 - Repeated K-means with different K, number of clusters, and a cluster-quality criterion can be used to determine best K

Decision Engineering Analysis Laboratory

San Diego Cambridge

Deep Insights -acilitating Decision-Making Via

Fundamentals of Clustering 2

Spectral Clustering

Spectral-based partitioning into 2 clusters

- Feature vector
- Proximity metric
 - Example 1: gaussian function of distance between feature vectors of node m and node n
 - Example 2: cosine similarity vector product of feature vectors for node m and n
- Similarity Matrix: $S_{mn} = proximity(node m, node n)$
- Cut Description
- Normalized Cut Description
- Laplacian matrix: L = D-A
- Eigenvector associated with second smallest eigenvalue
- Hierarchical application of spectral-based partitioning

Decision Engineering Analysis Laboratory

San Diego Cambridge

Section 2: Cyber Robustness, Adaptation, Countermeasures and Analytics

Video #1: Whitebox Orientation for Software Cyber Robustness (15 min)

- Lessons Learned from Cyber Efforts amidst Ever-Increasing Cycles of Adaptation
- Anti-Systems (Countermeasures)
- Predictive Analytics

Decision Engineering Analysis Laboratory

San Diego Cambridge

Section 3: Artificial Intelligence, Creativity, Mutation, Traffic Analysis, Information Sharing

- Video #2: Hybridizing Artificial Intelligence Systems with Human Intuition as well as Open Source and Non-Open Source Components (15 min)
- Lessons Learned for Maximal Cyber Creativity to mitigate High Adversarial Mutation Rates.
- Traffic Analysis (Baselining, Pattern and Anomaly Detection)
- Information Sharing (Target of Choice or Target of Chance)

Decision Engineering Analysis Laboratory

San Diego Cambridge

Section 4: Ideation for Future Cyber Innovation

Audience participation with Instructor moderation

• Cyber Survey (Time Allowing)

San Diego Cambridge

THANK YOU FOR YOUR PARTICIPATION

Decision Engineering Analysis Laboratory

San Diego Cambridge

-acilitating Decision-Making Via Deep Insights