

Augmented Reality meets Internet of Things

Dr. George Koutitas

Assist. Prof. in Electrical and Computer Engineering, Director at XReality Lab, Texas State University Founder & CEO at Gridmates Inc. george.koutitas@txstate.edu

XReality Team

Presentation outline

- The connected Things (IoT)
- Mixed Reality (AR/VR)
- A new paradigm: Virtual Environment of Things (VEoT)
- Demo: Integration of Arduino + Hololens
- Discussion

Big Data

• Every day, we create 2.5 quintillion bytes of data, so much that 90% of the data in the world today has been created in the last two years alone.

-this data is called 'Big Data'

• What we expect in the near future...

Non-human centric > human centric data by 2020

Big Things

Internet of Things

 Human to Thing interaction anywhere, at any anytime

- Computing devices are embedded in everyday objects
- Support data and command flow across wireless low data rate networks with low power requirements

IoT Market Dynamics

- The global IoT market will grow from \$157B in 2016 to \$457B by 2020, attaining a Compound Annual Growth Rate (CAGR) of 28.5%
- Discrete Manufacturing, Transportation, and Utilities will lead all industries in IoT spending by 2020, averaging \$40B each
- B2B IoT segments will generate more than \$300B annually by 2020, including about \$85B in the industrial sector

src: Forbes, 2017 Roundup Of Internet Of Things Forecasts

Smart City is a key driver for IoT, B2G

Industrial IoT provides B2B monetization

Hello, Smart Home

....50 connected devices in our homes = B2C

Dr. George Koutitas, AR meets IoT, XReality Research Lab

Ð

Dr. George Koutitas, AR meets IoT, XReality Research Lab

Latency <10ms (Tactile Internet)

Edge/Fog computing

A key challenge: Thing-to-Human interface

Mixed Reality

Augmented Reality

Augmented Reality (AR) is a view of the physical real-world filled with augmented objects through immersive devices.

Computer generated 3D objects projected in physical spaces, to generate realistic images, sounds and other sensations that simulate a user's physical presence in a virtual or imaginary environment

Virtual Environment of Things

VEoT: Integrating real-world smart things and virtual-world avatars/holograms in a computer generated virtual environment so that entities in either worlds can interact with one another in a realtime manner

VEoT Agriculture

VEoT Industrial

Dr. George Koutitas, AR meets IoT, XReality Research Lab

LOCATI

XReality Research Group at Texas State

- Develop lightweight APIs to enable the integration of IoT devices and AR applications
- Provide Low Latency <10ms (Tactile Internet) by implementing Edge/Fog computing principles
- Develop an interactive visual communication strategy for enhanced UX (IoT Virtual Twin)
- Focus on **industrial applications** (Civil Eng, Networking, Health)

Demo 1: Object identification View video → https://youtu.be/jeEM5w0aKMU

Demo 2: IoT / AR Interaction

View video → <u>https://youtu.be/XHGtlbU-TBE</u>

Demo 3: Network propagation visualization View video → https://youtu.be/npcdQPvOb60

Demo 4: First Responders View video → https://youtu.be/HKcNgCU6Wa0

Demo 5: Network visualization View video → https://youtu.be/GEB9C4mVQ4Q

Sensor R4 Temp : 72.81 F Sensor R1 73.7 F Temp : 71.03 F RSSI RSSI: 76 dB . 71.21 Coordinator /5 dB MULTIHOP CONNECTION BETWEEN NODES

Devices and Hardware

Augmented Reality

 Microsoft Hololens VR headgear

Internet of Things

- Arduino Uno R3
- ZigBee XBee S2D
- Raspberry Pi (Edge computing)

Technologies

Unity (AR Design)

Unity

- Unity is a multipurpose game engine that supports 2D and 3D graphics, drag-and-drop functionality and scripting using C#
- Unity supports building to 27 different platforms.
- Support for Holographic App building.

Vuforia (Object Recognition SDK)

Vuforia

- It is a Software Development Kit (SDK) which enables Augmented Reality apps.
- Computer Vision Technology
- Marker and markerless object tracking.
- It provides support for application development through an extension to the Unity Game Engine.
- Object to be detected are scanned and processed then formulated into unity asset package.

Architecture

Network setup

- Sensor are paired with respective Arduino boards.
- ZigBee is used as a communication protocol between the sensor nodes
- LM35 precision temperature sensor
- LED on/off can be controlled from the network management portal
- Series2 XBee modules (Mesh Networking)
- Xbee shield connected to Arduino- Routers
- Xbee shield connected to base station- Coordinator
- Coordinator has information of all the routers.
- XCTU software is a graphical user interface which helps in interacting with xbee modules
- Multiple Digi modules can be configured on XCTU
- XCTU helps in analyzing the network view and visualize the topology

Network Management Portal

- Python scripting is used to decode the data from the coordinator.
- Decoded data is hosted on to MySQL Database
- Flask-python web development
- HTML webpage –where a user will have a manual control over the data, choose the network topology that needs to be accessed from the Network Management Portal.
- ngrok is used to host the data into cloud

A chaithraconn ×						
File Edit View Query Databas	se Server Tools Scripting	g Help				
0 1 0 0 0 0 0						
Navigator	SQL File 1 sensor_data	1 ×				
SCHEMAS 🚸 🕫	🗀 🖬 🖗 🖗 👰	0 🚯 📀	💿 🔞 Limit to 1000 rows	• 🖕 🛷 🔍	1 7	
Q Filter objects				NY LE A		
cktamparaturan	Result Grid 🔢 🚷 Filter	Rows:	Export: 🎼 Wrap C	ell Content: 🔢 Fetch r	ows: 鹶 📑	
	XBee_SH XBee_SL	XBee_RSSI_DB	XBee_Routing_Tables	sensor_datetime	sensor_date	sensor_ ^
V 🗟 temperatures	0013a200 414812f7	74	ZidBee Mesh Initialization	07-03-2018 11:40:22	07-03-2018	11:40:22
Tables	0013a200 414812f7	74	R1->co-ordinator	07-03-2018 11:40:23	07-03-2018	11:40:23
routerstatustable	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:25	07-03-2018	11:40:25
sensor data1	0013a200 414812f7	75	R1->R2->R5->co-ordinator	07-03-2018 11:40:26	07-03-2018	11:40:26
Columns	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:27	07-03-2018	11:40:27
Indexes	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:28	07-03-2018	11:40:28
Foreign Keys	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:29	07-03-2018	11:40:29
	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:30	07-03-2018	11:40:30
sensor data?	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:31	07-03-2018	11:40:31
	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:32	07-03-2018	11:40:32
	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:33	07-03-2018	11:40:33
sensor_data4	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:34	07-03-2018	11:40:34
sensor_datab	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:35	07-03-2018	11:40:35
Views	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:36	07-03-2018	11:40:36
Stored Procedures	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:37	07-03-2018	11:40:37
Tunctions	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:38	07-03-2018	11:40:38
	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:39	07-03-2018	11:40:39
	0013a200 414812f7	74	R1->R2->R5->co-ordinator	07-03-2018 11:40:40	07-03-2018	11:40:40 ¥
	<					>

MySQL database

LED R1 ON LED	R2 ON LED R3	ON LED R4 ON L	ED R5 ON					
Sensor-data1	Sensor-data2	Sensor-data3	Sensor-data4	Sensor-data5				
		Temperature Rou	ting table RSSI F	RouterStatus3				

Network Management Portal

Dr. George Koutitas, AR meets IoT, XReality Research Lab

one drop at a time

Process flow

TEXAS STATE UNIVERSITY The rising STAR of Texas

Reading Temperature Sensor

- LM35 Sensor
- Reading Sensor data at pin A0
- Converting sensor data into Fahrenheit
- Sending temperature value as payload to coordinator

```
int sensor = A0;
void loop()
  String string payload = "";
  digitalWrite(LED pin, LOW);
 temp = analogRead(sensor); // read LM35 sensor output
  tempc = temp*0.0048828125*100; //convert sensor data into centigrade
  tempf = tempc*9/5+32; //convert centigrade to fahrenheit
  dtostrf(tempc, 3, 3, tempxbee); //convert float data to string
  for (int i = 0; i < sizeof(tempxbee); i++)</pre>
   string payload += tempxbee[i];
```


Coordinator Function

- Receive payload
- Decode data package
- Create MySQL table and insert temperature data
 # Insert sensor data into the MySQL

Decode Sensor data from XBee frame def sensordatadecode(decodedData): list_of_rfdata = decodedData[1].split(",") sensordatatemp = [decodedData[0]] sensordatatemp += list_of_rfdata return sensordatatemp

Flask Server Function

- Rendering HTML page
- Reading data from MySQL Database
- Host data on HTML
- Flask Server is the Integrator

```
app.route('/sensor-data/temperature-json/')
def temperature_json():
    alltemp = []
    connection = MySQLdb.connect(host='localhost',
                                  user='admin',
                                  passwd='password',
                                  db='temperatures'
    cur = connection.cursor()
    sensor_number = request.args.get('number')
    cur.execute("SELECT temperature FROM sensor_data" + sensor_number
    temp = cur.fetchall()
    \mathbf{i} = \mathbf{0}
    if len(temp) > 0:
        for row in temp:
            alltemp.append(row[0])
    return jsonify(alltemp)
```


Unity Sensor UI Panel

- When UI panel (GameObject) is active, the embedded scripts are activated
- When scripts are activated, its corresponding URL Requests are made to the Flask Hosted HTML page for information.

127.0.0.1 - [11/Apr/2018 17:21:17] "GET /sensor-data/rssi-json/?number=1 HTTP/1.1" 200 -	
127.0.0.1 [11/App/2010 17.21.17] "CET / appage data / tampageture ison / 2 pumber 2 UTTD / 1 1 200	
127.0.0.1 [II/Apr/2018 1/:21:1/] GET /Sensor-data/temperature-json/?number=3 HTP/1.1 200 -	
127.0.0.1 [11/Apr/2018 17:21:17] "GET /sensor-data/temperature-json/?number=1 HTTP/1.1" 200 -	
127.0.0.1 [11/Apr/2018 17:21:17] "GET /sensor-data/rssi-json/?number=2 HTTP/1.1" 200 -	
127.0.0.1 [11/Apr/2018 17:21:17] "GET /sensor-data/rssi-json/?number=5 HTTP/1.1" 200 -	
127.0.0.1 [11/Apr/2018 17:21:17] "GET /sensor-data/temperature-json/?number=2_HTTP/1.1"_200 -	
127.0.0.1 [11/Apr/2018 17:21:17] "GET_/sensor-data/temperature-json/?number=5 HTTP/1.1"_209 -	
127.0.0.1 [11/Apr/2018 17:21:17] "GET /sensor-data/temperature-json/?number=4 HTTP/1.1" 200 -	
127.0.0.1 [11/Apr/2018 17:21:17] "GET /sensor-data/rssi-json/?number=3 HTTP/1.1" 200 -	
127.0.0.1 [11/Apr/2018 17:21:17] "GET /sensor-data/rssi-json/?number=4 HTTP/1.1" 200 -	
decodedData is ['0013a20041680c8f', '71.39,52', 'rx_explicit', '11-04-2018 17:21:18', 1523485278103.0, '769	93 '
Nw topo: {'0013a20041680c8f': 'fffe'}	
sensordatadecoded is ['0013a20041680c8f', '71.39', '52']	
Writing Sensor data to MySQL database	
Sensor data have been written to MySQL database	

Unity Sensor UI Panel

- Data from the HTML is saved into a string
- The data from the string is tailored to appear in the UI Panel "Temp:"

Demo 5: Network visualization View video → https://youtu.be/GEB9C4mVQ4Q

Sensor R4 Temp : 72.81 F Sensor R1 73.7 F Temp : 71.03 F RSSI 78 dB RSSI: 76 dB . 71.21 Coordinator /5 dB MULTIHOP CONNECTION BETWEEN NODES

Future work: Holoportation

Opportunities

- Differentiate by creating state of the art applications and products
- Raise research funding
- Commercialize new ideas
- Write joint publications in peer reviewed journal and conference proceedings
- Ride the wave of AR+IoT innovation

Thank you!

XReality Research Group

http://xreality.wp.txstate.edu/

george.koutitas@txstate.edu

