IV Work Area:

"CONNECTED CARS: ROAD TO VEHICLE COMMUNICATION THROUGH VISIBLE LIGHT"

An illustration of traffic control system of tomorrow

Motivation and Objectives

I2V, V2V, V2I optoelectronic WDM cooperative vehicular system enables direct communication between vehicles, roadside infrastructure and traffic lights control

<u>Outline</u>

- Connected vehicles model
 Transmitters and Receivers
- I2V, V2V and V2I communications
- Cooperative VLC System Evaluation and proof of concept.
- Conclusions and future trends.

State of art: MUX/DEMUX techniques

The output presents 2⁴ ordered levels each one related with *RGBV* bit sequences

Connected Vehicles Model

Generic model for cooperative vehicular communications

Until recently...

- (V2V) communication was limited to brake lights, turn signals;
- ✓ (V2I) was restricted to point detection (loop detectors).

Illustration of the proposed I2V2V2I communication scenario:

Connected vehicles communication in a crossroad.

Lighting plan

Four modulated LEDs (RGBV) located at the corners of a **square grid**.

footprint regions	#1	#2	#3	#4	#5	#6	#7	#8	#9
Overlap	RGBV	RGB	RB	RBV	BV	GBV	GV	RGV	RG

Generated joint footprints

 Promising benefits expected from safety and mobility improvements at the road network

Cooperative VLC System Evaluation

Generalized view of the architecture

Three different scenarios:

Scenario 1I 2 V 2 V 2 IScenario 2I 2 V 2 IScenario 3I 2 V 2 V 2 I

Operational procedure:

Each vehicle receives two different messages:

- I2V and V2V coming from the streetlight and from the follow vehicle;
- Compare them and infers the drive distance and the relative speed.
- Send the information to a next car (V2V2V) or to an infrastructure (V2V2I).

In order to verify the system operability and efficiency we have conducted an extensive set of measurements

 $\Delta t = \dots \Delta v = .$

R₁₄

B24

R₃₄

B44

2

2

7

G₃₅

 Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection

Scenario 2: I2V2I

.I2V MUX signal received by a rooftop receiver moving in the S direction when the vehicle 2 is located #5

Request time: t₂

Vehicle 2 sends the request message to the infrastructure (V2I)) and informs the signal controller that this vehicle desires service.

.V2I communication from vehicle 2 to the infrastructure

Scenario 3: I2V2V2I

tion area Phasing of P

Access time

01 phase

duration

Phasing of traffic flows

02 phase

uration

03 phase

duration

HORIZON 2020 Smart, green and integrated transport

Virtual Info Day

23 October 2018 9:00-13:00 #H2020Transport #InvestEUresearch

Horizon 2020 Transport virtual info day

The event will present the following 2019 calls for funding making available a total of nearly €355 million

<u>Mobility for Growth</u> <u>Automated Road Transport</u> <u>Green Vehicles</u> <u>Next Generation Batteries</u> <u>Conclusions</u>

Light-activated pi'n/pin a-SiC:H devices combines the demultiplexing operation with the simultaneous photodetection and self amplification.

Connected vehicles information from the network (I2V), vehicular interaction (V2V) and infrastructure (V2I) is analyzed.

A generic model of cooperative transmissions for vehicular communications services is established.

The experimental results, confirmed that the proposed cooperative VLC architecture is **appropriate** for the **control and management of a traffic** light controlled crossroad network.

Two-level optimization: phase sequence and duration.

YOUR AT

<u>Optical communications strategies</u> Future research directions

Examples of visualizations of urban dynamics

DI The Heartbeat of a smarter Society

innovation strateg

- product developm
- continued growth

