An Empirical Study of Mutation-Based Test Case
Clustering Prioritization and Reduction Technique

Longbo Li, Yanhui Zhou, Yong Yu, Feiyan Zhao Shenghua Wu and Zhe Yang

Southwest University, Chongqging, China Meiyun Zhi Number Technology Co., Ltd.

Mutation analysis is also called mutation testing, which is a method for measuring the
quality of test suite, using mutants (artificially injected faults) generated from the
original program using special rules (mutation operators)[l.

[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "“Hints on test data selection: Help for the practicing programmer,” Computer,
vol. 11, no.4, 1978, pp. 34-41.

Due to the expansion of the the software scale, a large number of test cases are
generated in regression testing.

We need to prioritize and reduce test cases during the regression testing.

Ei

We usually prioritize and reduce test cases usually using code coverage criterion.

1. Statement coveragell) :
‘ A test case can kill the mutation program, not only

2. Branch coveragel?] cover code information, also need to kill the
mutation program.

T [1]

Mutation criterion > Code Coverage criterion

[1] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing Test Cases for Regression Testing,” |IEEE Transactions on Software
Engineering,vol.27, no.10, 2001, pp. 924-948.

[2] Yoo S, Harman M. “Regression testing minimization, selection and prioritization: A survey,” Software Testing, Verification and
Reliability 2012, 22(2):pp. 67-120.

Clustering algorithm belong to unsupervised learning algorithm. Clustering algorithm
can reveal the intrinsic properties and laws of data. Hierarchical clustering
algorithm(HCA) to achieve good results based on code coverage information in test
case prioritizationll,

We use HCA to explore mutation-based test case prioritization and reduction technique.

[1]R. Carlson, H. Do, and A. Denton. “A clustering approach to improving test case prioritization: An industrial case study,” In Proc, ICSM,
2011,pp. 382-391.

1. Every mutation operator can generated many mutants in mutation analysis. If a mutant
and original program return different returns for same the test, then the test kills the

mutant.
2. The priorities of the mutants are the same in previous study('121[3],

Mutants have diverse attributes, and each mutant has a different priority.

[1]Do H, Rothermel G. “On the use of mutation faults in empirical assessments of test case prioritization techniques,” IEEE Transactions on

Software Engineering 2006, 32(9),pp. 733-752.

[2] Lou Y, Hao D, Zhang L. “Mutation-based test-case prioritization in software evolution,” In Proceedings of the 26th International
Symposium on Software Reliability Engineering (ISSRE), IEEE: Gaithersbury, MD, USA, 2015,pp. 46-57.

[3] Shin D. Yoo S. Papadakis M. and Bae D.H.“Empirical evaluation of mutation-based test case prioritization techniques,”Software:testing

verification and reliability, V0l.29.2019.e1695.

Ei

Mutation Program Unit(MPU) Definition:

We call mutation programs generated by the same mutation operator a mutation program
unit. A MPU contains many mutants. The smallest unit in MPU is a mutant. In this paper, we
use the smallest mutation program unit.

Mutation Program Unit ||

Why do we use the MPU?
1. A mutation program that is hard to kill by a test case can usually trigger a real fault!l.
2. Because of the large number of mutation programs generated, mutation analysis consumes

a lot of computing resources, and the use of high-priority mutation programs can reduce
computational overhead.

[1] Shin D. Yoo S. Papadakis M. and Bae D.H.“Empirical evaluation of mutation-based test case prioritization
techniques,”Software:testing verification and reliability, Vo0l.29.2019.e1695.

Mutation Program Unit Kill & Priority Matrix-

Test Case
Name

Mutation Program Unit(MPU)

<1

g

M3

4

1

0

0

T

0

Ts

Ik

Dﬂﬂ——g

—

1
1
1
0

1
0
0

|
1
0
0

C-—Gn:l{:-g

o =lo|o|lo| =

Ty

Test Case Mutation Program Unit(MPU)
Name mo | m | omeo g mag | M5 e g
To 0.5 0 0 0 0 0.5 0 0
T 05 | 05] 0 0 05 | 0 0
T 0 0.5 0 075 1 05] 05 0 0
Ts 0 0 0 0 0 0 | 0.75 | 0.75

After the mutation analysis, we first generate the mutation program unit kill matrix, which is

then transformed into the mutation program unit priority matrix.

Test Case Prioritization Evaluation _

Average Percentage of Fault Detection(APFD)[1]

APFD =1 —
nm 2n

Average Percentage of Weight Fault Detection(APWFD)

Wy XTF, +-+W, XTE, 1
APWFD =1 — = +
= Wi Xn 2n

[1] Elbaum S, Malishevsky A, Rothermel G. “Test case prioritization: A family of empirical studies,” IEEE Transactions on Software
Engineering 2002; 28(2):159-182.

-]

Hierarchical Clustering Algorithm _

16
144 k=2
12 -
w 104 K=4
=
s
.
=
= 8 4
[1~]
1]
=
= K=6
wWeoos
4 -
2 -
s
T1 TS5 T8 T4 Te — — m—

Test Case Mame

Hierarchical clustering algorithm can control how many clusters are generated. K
represents the number of clusters.

i

Defects4.J

Fixed Program

Major

Mutation Kill
information

Mutants kill &
priority matrix

A

Cluster algorithm

Developer-Written
Test Case

Prioritization result

<1

Is the different distance calculation method have different effects on test case prioritization
and reduction?

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

APFD

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

A T A
| U Y i
T 1N
|
il
B —Jaccard
—Hamming
B —— Euclidean
— — Cosine
| | | | | | | | | | | | | | | | | | |
o 18 36 54 72 20 108 126 144 162 180 198 216 234 252 270 288 306 324 342

Real Fault Praogram

i

Does our approach have an impact on the capability of fault detection test cases?

Analysis index Analysis index
Program
APFD Cluster timels) Test case APWFD Cluster time{s) Test case
Chart 20,0210 2.0764 56093 18.7334 0.1189 3577
Closure 123.9185 16492548 440296 123.1317 T58.1702 182155
Lang 47.6511 10,0078 11338 484177 15700 64380
Math 91.4900 1657274 22688 88.2791 63,9586 9941
Time 25.5815 122.3370 70239 252988 T1.4638 17935
Average 0.8819 5.3697 - 0.868] 2.5579 -

NOISNTONOD

We have proposed an novel definition to Mutation Program Unit.

We have proposed mutation-based test case prioritization and
reduction method.

Our method can reduce the number of test cases by 40%, and the
loss of fault detection capability is only 1.38%.

.l We will systematically explain the theoretical mutation program
unit priority we propose.

) We will consider reducing the complexity of algorithms.

3 We will explore the impact of our approach on test cases that
trigger real faults.

AdO0OM JdJdNLnd

i

THANKS

L

