

Adversarial Resilience Learning

Analysis and Resilient Operation of Complex Systems without Domain Knowledge Dr.-Ing. Eric MSP Veith <eric.veith@offis.de>

Our Infrastructures become more complex with every day.

© AdobeStocl

We add to this complexity every day: Through more communication networks and learning systems necessarily so. Илимов Макси AdobeSt Adversarial Res ence

8

"Machine Learning: The High Interest Credit Card of Technical Debt" — Sculley, et al. (Google), 2014

Adversarial Resilience Learning | NexTech 2020 | Eric MSP Veith

C AdobeStock_pixtumz88 _207877287

Power Grids: A Critical Infrastructure

> Basis for our society!

Spanning Continents

> From Scandinavia to North Africa, from Ireland to Asia

Effects ubiquitously visible

> Instabilities spread almost instantaneously

Conflicting goals

> Monetary, technical, and political interests not congruent

Caught in a fast and turbulent change

Major Trends

Influencing the Cyber-Physical System Power Grid

1. Evolution of the Power Grid,

- > Many small generators, critical in sum
- > Competition & business model innovations
- > Growing complexity only mangeable through more digitalization – vicious circle!

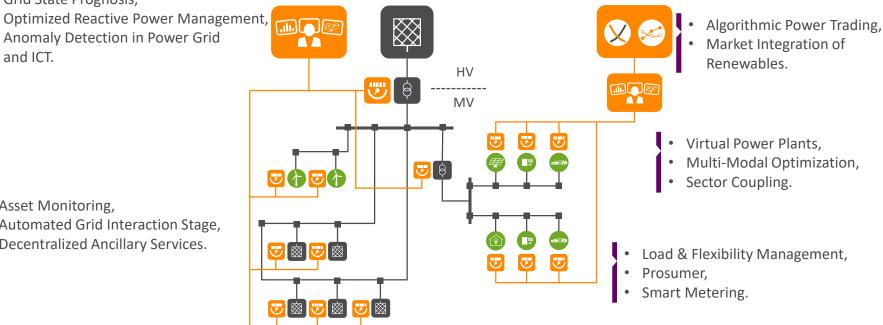
2. Digitalization

- > IoT trends: Many thousand "intelligent" devices (Nest, baby monitors, Smart TV, etc.) connect to the grid "In IoT, the 'S' stands for 'Security'."
- > Buzzword Bingo: Smart Services, Cloud, Outsourcing, AI, Big Data, ...
- 3. New Threats through Cyber Attacks
 - > State-sponsored attacks (Grey Wars)
 - > Ever more sophisticated tools
 - > Strong pressure for backdoors

Adversarial Resilience Learning | NexTech 2020 | Eric MSP Veith

Asset Monitoring,

and ICT.


- Automated Grid Interaction Stage,
- Decentralized Ancillary Services.

AI in the Power Grid

A Complex System Indeed

Anomaly Detection in Power Grid

Grid State Prognosis,

What follows? Obvious Conclusions Drawn from the Current State of Affairs

- Trends in digitalization from other areas will flood into our critical infrastructures. 1.
- Digitalization of our power supply, transportation, etc., will lead to a new threat 2. level – damage potential unfathomable.
- Digitalization & machine learning are neccessary for sustainable, environment-3. friendly infrastractures: Not only a threat, but also a great potential, even for security!

We don't really understand the interdependent effects between digitalization and critical infrastructures yet.

There are two types of companies: those that have been hacked and those who don't know that they have been hacked."

John T. Chambers.

Applies to Critical Infrastructures, too

Attack against the Ukrainian Power Grid

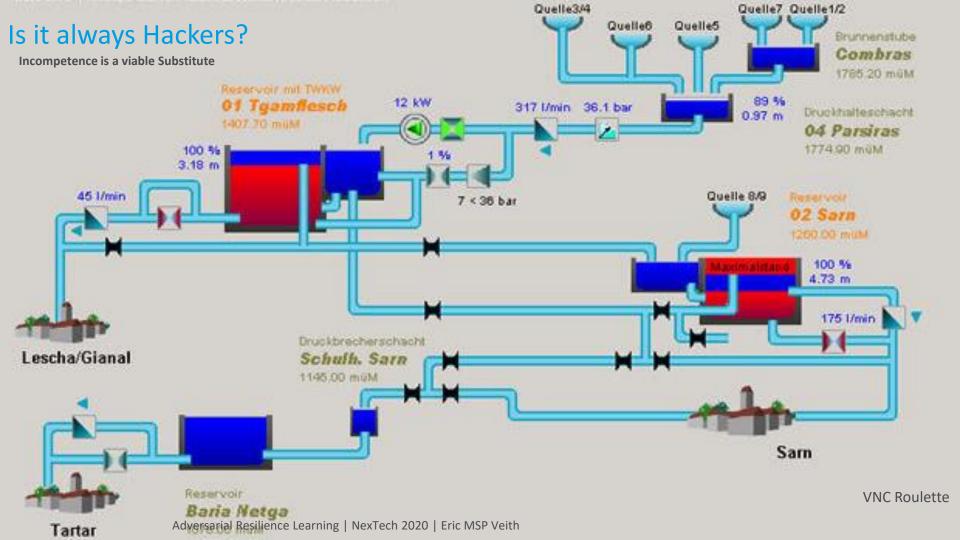
IARIA OFFIS

Dec 23rd, 2015

- > Cyber Attack leads to **Blackout**
- > 3 Grid Operators targeted
- > Operative Intrusion into Control Systems
- > Disconnect of several Transformers
- > Several Months in Preparation

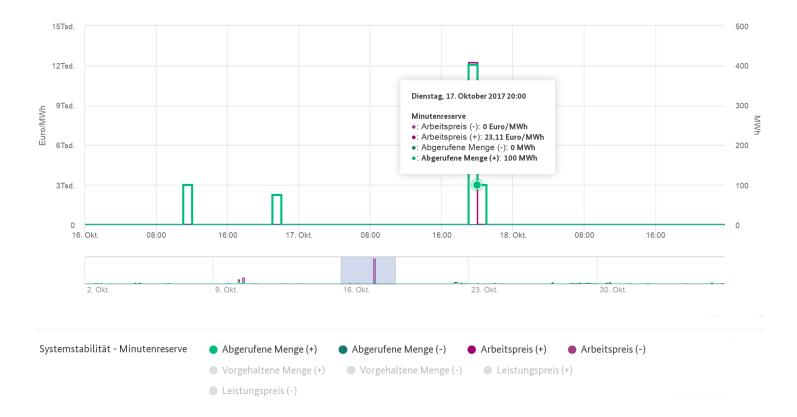
2016

> Highly automated Variant


Our infrastructures are valuable targets.

Digitalized Critical Infrastructures: A Threat?

Newspaper Collection



Market can also be the Culprit

Gaming a Critical Infrastructure?

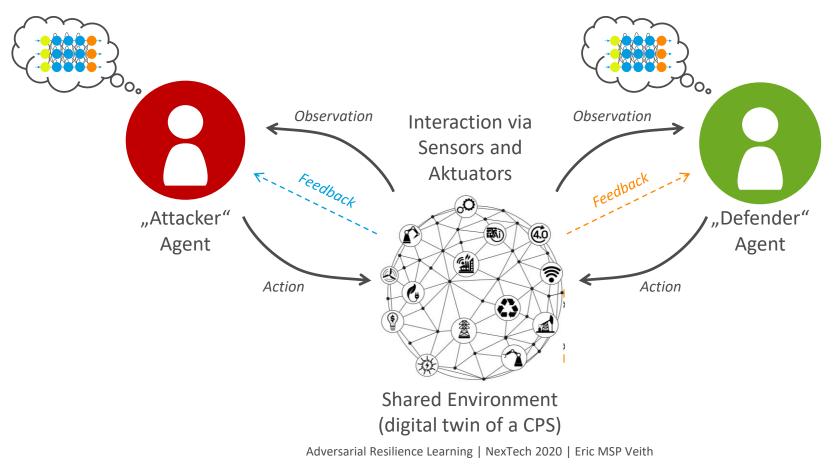
Adversarial Resilience Learning | NexTech 2020 | Eric MSP Veith

Adversarial Resilience Learning | NexTech 2020 | Eric MSP Veith

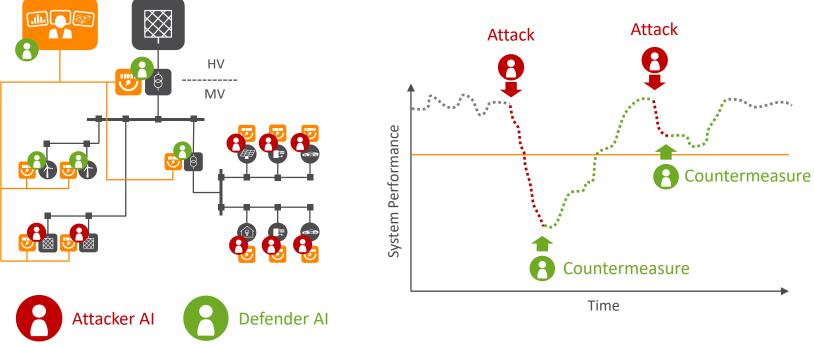
LearnsingResilient Control

CPS inherently vulnerable

- > Interconnected CPS have always attack surface due to their inherent complexity
 - > Low latency of ICT and OT
 - > High interdependence
 - > Complexity in breadth and depth
 - > Cricital Services as SPOF (DNS, BGP, SCADA, SDL)
- > Learning Stratgies for automatic issue mangement



Adversarial Resilience Learning Concept


Competing Agents Learn in a Shared Environment

Demo: Attack on a Power System

Prevention of (sub-)system takeover as a secondary problem

skier adv.ong

ARL != AL

Adversarial Learning

- > Attempt to modify input data slightly in order to yield extremely different output from ANN
- > Modification of data not or only slightly visible to humans
- > Ex: RGB noise on a picture, small textual changes in spam messages
- > AL: Finding mechanisms against these attacks

Discriminator to differentiate

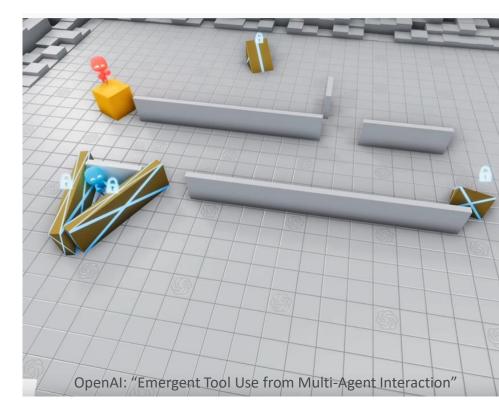
between real and generated data's distribution

Adversarial Resilience Learning | NexTech 2020 | Eric MSP Veith

- > Zero-sum game
- > Generator maps vector of latent variables to feature space; Discriminator evaluates the result

> Error measure: Ability of the

Generative Adversarial Networks ARL != GAN

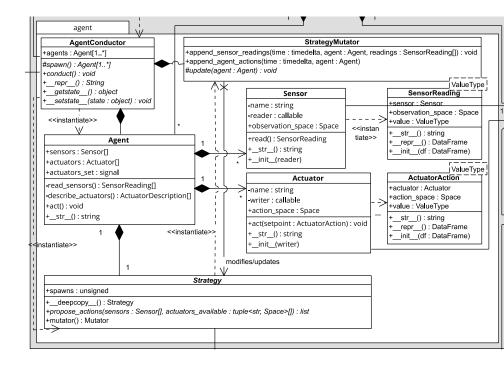


Why does it work?

RL Agents discover bugs in the engine

- > Setup: Two groups of agents play hide and seek
- > No domain information; agents learn strategies and tool use independently
- > Result: Agents learn to exploit bugs in the underlying game engine
 - > Holes in walls
 - > Sliding boxes
 - > Edge/corner jumps

Multi-Agent DRL



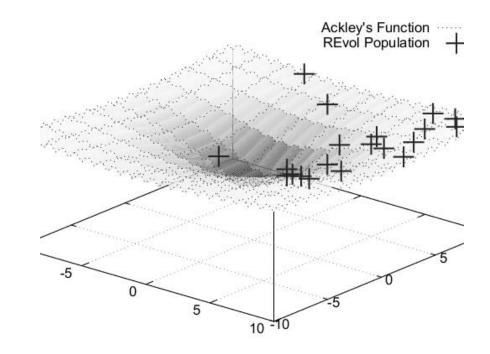
Multi-Algorithm

- > E.g., Q-learning vs. A3C (multiple workers)
- > Conductor orchestrates workerenvironment pairs
- > Strategy: The "muscle" in an agent
- > Mutator: The "brain" for several agents

Simple Implementation API

> Only "brain" and "muscle" need to be implemented for new algorithms

Neuroevolution

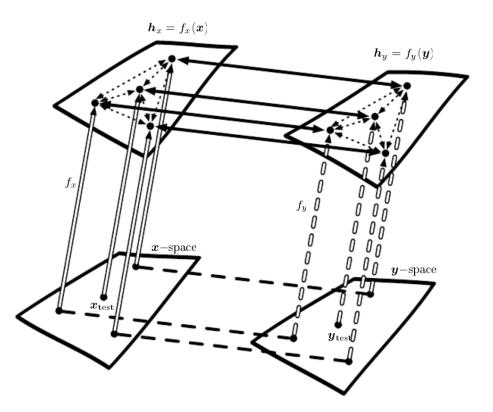


Motivation

> Pre-defined policy network: Implicit domain knowledge

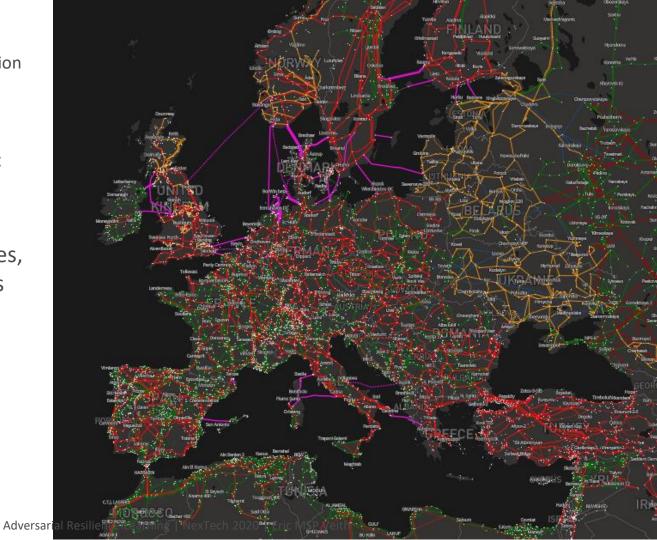
Combination of Revol and NEAT

- > Implicit gradient information
- > Dynamic reproduction PDF
- > Speciation
- > Indirect encoding



Transfer Learning for Multi-Agent DRL

Ensure transferability with minimal re-training


- > Agents can "conquer" their environment (think CTF!)
- > Different models in the same domain
- > Transfer between similar domains
- > Extraction of algorithms?

Rigging the Game

Strategic Infrastructure Extension

- > Weaknesses are indicator for strategic infrastructure investments
- > Calculate risks & losses, motivate investments

Analysis & Training of Resilient Systems

Analysis – attacker only

- > Resilient Systems Lab
- > Attacker explores vulnerabilities
- > "Conquest" of a system
- > Attack vectors & log as basis of traditional analysis

Ethics of ARL

- > ARL a weapon?
- > Lizence a soluation?
- > Laws of Robotics possibly inherent?

Training – Attacker & Defender

- > AI for Grid Operation
- > Resilient overall system
- > Attacker trains defender
- Attacks can be environmental factors
 - > Deviations in prognoses
 - > Accidents, etc.

Conclusion

ARL enables discovery of vulnerabilities and interdependencies

> Even when conform to regularizations! (EnWG, GridCodes, TAB etc.)

Development of defense (!) strategies

> Ethic dilemma

"Attacker-Defender-Games"

- > Impact analysis in "anomalie-sensitive State Estimation"
- > Risk models, investment strategies (finding an equilibirum)
- > Analyzing asymmetries ("Rigging the Game")

für Bildung und Forschung

