

Tutorial Datasys 2020

Text Mining as a Tool in Repressive and Preventive Investigation Process

Michael Spranger

hs-mittweida.de

Criminalistic Cycle

(textual) information management

Real World Case

Is text mining well researched in this domain?

•

- rich of slang
- little context
- socio-economically shaped
- heterogeneous
- hidden semantics
- language-economically eroded

well-formed english texts

closed, limited domains

- non-english forensic texts
- **interdisciplinary** domains

4 **Text Mining as a Tool in Repressive and Preventive Investigation Process | Michael Spranger** (C) 24.09.2020 University of Applied Sciences Mittweida

Hypotheses

Adding a knowledge model (investigative knowledge, legal norms) to text mining processes leads to comparable quality in the interdisciplinary and cross-lingual domain of forensic texts.

Forensisc Knowledge Representation as Central Element

Forensics

Analysis of mobile communication

Universal Approach

- In extremely erroneous, slang and low-context texts, such as SMS, forensic information can only be detected with high reliability by **incorporating investigator knowledge**.
- An error margin can be determined.

Methods

State-of-the-Art Methods	•	Semi-supervised approaches	low sensitivity			
		• probabilistic language models (unigram, char-	-n-gram) + rules			
		• performance \rightarrow poor				
	• Difference Analysis \rightarrow mainly individual spellings					
			low precision			
	•	phonetic algorithms (e.g., Kölner Phonetik, Double	e Metaphone)			

Hypothesis

Search space reduction and conservative word matching result in high sensitivity with acceptable precision.

Positive side effect:

Conservation of the context \rightarrow Increase of comprehensibility

Method for Detection of Conversations

Frequency of response time of all messages

$$F(B) = \int_0^{t_p} B_0 e^{-rt} dt = 1 - p$$

Frequency of response times of relevant messages

11 Text Mining as a Tool in Repressive and Preventive Investigation Process | Michael Spranger (C) 24.09.2020 University of Applied Sciences Mittweida

Entire Process

Analysis platform for mobile communication(MoNA)

Reduction of the manual effort by >> 70%

Interactive analysis allows constant adaptation of the criminalistic hypothesis

Cross-lingual through parallel knowledge model

Prevention Analysis of social networks

Is crime predictable using social networks and scientific methods?

Rioting in the wake of demonstrations, sporting events or as a result of political dissatisfaction often becomes apparent in advance in the social media.

Terrorists often recruit their future assassins via social networks. Amok runners often signal their readiness in social networks.

Rioters often announce themselves in social networks

(C) 24.09.2020 University of Applied Sciences Mittweida

16

Hypothesis

By monitoring social networks, damage events in the real world can be predicted.

Process model for hazard prediction

18 **Text Mining as a Tool in Repressive and Preventive Investigation Process | Michael Spranger** (C) 24.09.2020 University of Applied Sciences Mittweida

Prediction of events through sentiment analysis

Cooling phases often mark real events

Analysis Platform for Social Networks (SoNA)

Opinion leader detection

Evaluation of the risk potential

Cross-lingual through parallel knowledge model

Challenges

Huge amount of potential (hazardous) profiles

Closed/Secret groups and bots

Hypothesis

By transferring strategies of the human immune system, threats in social networks can be effectively identified.

Strategies:

- pattern recognition
- adaptation

Agent-based analysis of social networks

Actors of an artificial immune system for social networks

An Artificial Immune System

Opinion Leader

What exactly does that mean?

"Opinion leadership is the degree to which an individual is able to **influence informally** other individuals' attitudes or **overt behavior** in a desired way with relative frequency." [Rogers, 1962, p. 331]

What makes an influencer?

Katz and Lazarsfeld 1957 defined the following features:

- (1) personification of certain values,
- (2) competence,
- (3) strategic position in the social network (topology).

What does "influence" mean ?

	Spreading information quickly	Write something of importance
	depending on a strategic position in the network	 strategic position is mainly determined by mentions (quotations)
Meaning	• own activity is the most important factor	 dependence on the topic
	Are Social Bots Influencers?	Change over time!
Approaches	 topology-based 	topology-basedcontent-based
Methods	 network centrality measures, PageRank, LeaderRank 	 network centrality measures, PageRank, LeaderRank, sentiment analysis, topic mining

How does LeaderRank work?

- Users are nodes, directed edges connect followers with leaders
- Random walk on this graph, starting with $s_i(0) = 1, s_g(0) = 0$

$$s_i(t+1) = \sum_{j=1}^{N+1} \frac{a_{ij}}{k_j^{out}} s_j(t)$$

• Finds nodes that spread information further and faster.

Problems with LeaderRank

In networks with star topology :

- the network **owner** is **highly centralized**
- high centrality of a fraction of the nodes leads to a strongly distorted LeaderRank distribution
- competence is not considered
- peripheral nodes are not adequately represented

> LeaderRank is not meaningful!

Facebook network: "Die Linke" over 5 months

Hypothesis

Using the normalized LeaderRank skewness, star topologies can be detected in network graphs.

Detection of a Star-Shaped Topology

How can the degree of approximation to the star topology be quantified?

Normalized LeaderRank-Scewness $\hat{\nu}$ **:**

$$v_{LR} = \left| \frac{1}{N} \sum_{i} z(LR_i)^3 \right| \qquad \hat{v} = \frac{v - v_{min}}{v_{max} - v_{min}}$$

Normalized LeaderRank skewness [0,1] shows how strongly a network is distorted towards the star topology.

- \hat{v} for regular graphs = 0
- \hat{v} for star-shaped graphs = 1

Normalized Graph-Entropy \widehat{H} :

$$H = -\sum_{i=1}^{N} \frac{\deg(v_i)}{\sum_{j=1}^{N} \deg(v_j)} \log_2 \frac{\deg(v_i)}{\sum_{j=1}^{N} \deg(v_j)}$$

Normalized graph entropy quantifies the uncertainty of a specific path of information distribution.

- \hat{H} for regular graphs = 1
- \widehat{H} for star-shaped graphs = 0

Comparison of both measures

Experiment

- 6 networks with star topology with fixed number of nodes (N=16, 32, 64, 128, 256, 512)
- mutation over 100 generations towards a regular graph
- In each generation, edges are randomly added or removed between each pair of nodes

Test on real networks

month	actors	posts	comments	replies	\hat{H}	$\hat{ u}_{LR}$
January	2,878	26	2,955	3,471	0.19	0.98
February	2,146	33	2,196	2,062	0.24	0.98
April	2.432	40 26	2,558	3,245 3,295	0.17 0.22	0.97
May	4,765	31	4,130	5,674	0.10	0.98
Epinions	75,879	n/a	n/a	n/a	0.65	0.07

norm. Graph-Entropy and norm. LeaderRank-Scewness in Comparison

"Epinions" - Network (almost regular) "Die Linke" - Facebook (almost completely star-shaped)

The normalized LeaderRank skewness, as a function of network regularity, enables a stable detection of star-shaped topologies.

Hypothesis

The irregularity of a star graph can be compensated by punishing high activity with low mentioning.

Way out : CompetenceRank

Variant of the LeaderRank adapted to competence

$$CR(L_i) = \frac{LR(L_i)}{1 + \frac{k_i^{out}}{k_{total}^{out}}(LR_{total} = N)}$$

In regular graphs : $k_i^{out} = k_j^{out} = D \forall (v_i, v_j)$

$$CR(L_i) = \frac{LR(L_i)}{1 + \frac{D}{ND}N} = \frac{1}{2}LR(L_i)$$

Assumption: $LR(L_i) = CR(L_i)$

$$CR(L_i) = 2 \frac{LR(L_i)}{1 + \frac{k_i^{out}}{k_{total}^{out}}N}$$

(

Cumulative discrepancy is a function of network regularity

$$\sum_{i=1}^{N} |CR(L_i) - LR(L_i)|$$

An Artificial Immune System

Conclusion

- Investigator knowledge helps to improve text mining in forensics
- ✓ **MoNA** is an analysis platform for mobile communication that incorporates this paradigm.
- Algorithm for conversation detection
- Rating algorithm with search space reduction and conservative word matching
- ✓ With SoNA, an analysis platform for social networks was created incorporating this paradigm.
- Process for predicting potential hazardous events
- Model of an artificial immune system for social networks
 - CompetenceRank as an improved measure of opinion leadership

Future Work

- Joint Semantic Analysis: joint analysis of media and text for mobile devices
- Incorporation of context data (CPLSA/NetPLSA)
- Time related analysis of messages → **Prediction of cyclic recurring topics**
- **Evolution** of topics
- Multilingual text analysis with minimal amount of training data
 - approach through adaptation and expansion of Human Behaviour-based Optimization

Questions?

Feel free to contact me: spranger@hs-mittweida.de

